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Executive Summary

Classification and Discrimination of Sources with Time-Varying
Frequency and Spatial Spectra

ONR, Grant no. N0O0014-98-1-0176

Moeness Amin (PI)

This report presents the results of the research performed under ONR grant number
N00014-98-1-0176 over the period of October 1%, 01 to September 30™, 02. The research team
working on this project consists of: Prof. Moeness Amin (PI), Dr. Gordon Frazer (DSTO,
Australia), Dr. Yimin Zhang (Postdoctral Fellow), Dr. Fauzia Ahmad (Postdoctoral Fellow), Mr.
Behzad Mohammadi (Graduate Student). We have also collaborated with Dr. Alex Gershman
from McMaster University, Canada, Prof. H. Ge from NJIT, Dr. N. Ma from DSO, Singapore,
and Prof. A. Zoubir from Curtin University, Australia. The research over this fiscal year has

produced 6 journal papers and 8 conference papers. Copies of the principle publications are
included in the report.

The research efforts overt the past year have focused on improved characterization,
separations, suppression, discrimination, and localization of nonstationary and cyclostationary
sources using multi-sensor array receivers. The major contributions over the 2001-2002 fiscal
year are: 1) Characterization of near-field scattering using quadratic sensor-angle distributions, 2)
Improved blind separations of nonstationary sources based on spatial time-frequency
distributions, 3) Introducing a unified representation of nonstationary and cyclostationary signals,
4) Devising aperture synthesis for a through-the-wall imaging system, 5) Nonstationary
interference suppression in direct sequence spread spectrum communications using space-time
oblique projection techniques, 6) Formulating the time-frequency ESPRIT for direction-of-arrival
estimation of chirp signals, 7) Automatic classification of auto- and cross-terms of time-
frequency distributions in antenna arrays, 8) Proposing a new approach to jammer suppression for
digital communications.

1. Characterization of Near-Field Scattering Using Quadratic Sensor-Angle
Distributions

We have introduced the quadratic sensor angle distribution (SAD) for near-field source
characterization. The SAD is a joint-variable distribution and a dual in sensor number and angle
to Cohen's class of time-frequency distributions. It provides the power at every angle for each
sensor in the array. In this distribution, near-field sources have different angle for each sensor.
We use a known test source to illuminate the local scatterer distribution we wish to characterize.
The high-power test source can be removed via orthogonal projection so as to reveal the less
powerful local scatter. It is shown that the eigen-decomposition of the quadratic representation of
SAD lends itself to source representation via muitiple subarray beamforming. The SAD can be
used to clearly identify scatterers on the array axis both within and beyond the array extent.
Distinction between far-field spatial spread source and near-filed point source can also be easily
achieved.




2. Improved Blind Separations of Nonstationary Sources Based on Spatial Time-
Frequency Distributions

Blind source separation based on spatial time-frequency distributions (STFDs) provides
improved performance over blind source separation methods based on second-order statistics,
when dealing with nonstationary signals that are localizable in the time-frequency (t-f) domain.
In the existing STFD methods, the covariance matrix is first used to whiten the data vector, then
the mixing matrix and subsequently the source waveforms are estimated using STFD matrices
constructed from the source t-f autoterm points. We have improved the STFD-based source
separation method by performing both whitening and estimation steps using the source t-f
signatures. This modification provides robust performance to noise, and allows reduction of the
number of sources considered for separation.

3. A Unified Representation of Nonstationary and Cyclostationary Signals

The cyclic auto-correlation function, commonly used for cyclostationary signals, and the
ambiguity function, typically employed for analysis and recovery of nonstationary signals, such
as FM, have the same formulation. However, nonstationary and cyclostationary signals have
distinct localization properties in the time-lag frequency-lag domain. Therefore, nonstationary
and cyclostationary signals can be represented and processed within the same framework for
many applications, with the distinct signatures allowing effective source discriminations. An
example in array processing is given where nonstationary and cyclostationary signals are
separated following simple spatial signature estimation exploiting the aforementioned properties.

4. Aperture Synthesis for a Through-the-Wall Imaging System

“An aperture synthesis scheme using subarrays that is based on the coarray concept is
proposed for through-the-wall microwave imaging applications. Simulation results depicting the
effectiveness of the proposed synthetic aperture technique for a TWI system are presented. The
effects of incorrect estimates of wall parameters and errors in array element placement on this
technique are also investigated.

5. Nonstationary Interference Suppression In DS/SS Communications Using Space-
Time Oblique Projection Techniques

Orthogonal space-time subspace using a multi-antenna array has been recently
proposed as an effective means for nonstationary interference suppression in direct-
sequence spread-spectrum (DS/SS) communications. Interference mitigation techniques
may compromise the desired signal in the process of removing the interferers. This effect
is known as self-noise. The orthogonal subspace projection introduces self-noise and
signal distortions due to potentially high correlation between the spatio-temporal
signature of the DS/SS signal and that of the interferers. We propose to use the space-
time oblique projection, instead of the orthogonal subspace projection. The oblique
projection, while completely suppresses interferers, does not distort the desired signal
and, therefore, no self-noise is generated. The performance of a receiver with space-time
oblique projection, along with the sensitivity to the errors in spatio-temporal signatures of
the signals and interferers, is analyzed and compared with the receiver performance
employing the orthogonal subspace projection method.

ii




6. Time-Frequency ESPRIT for Direction-of-Arrival Estimation of Chirp Signals

We have developed an ESPRIT-type algorithm for estimating the Directions-Of-Arrival
(DOA's) of multiple chirp signals using Spatial Time-Frequency Distributions (STFD's). An
averaged STFD matrix (or multiple averaged STFD matrices) are used instead of the covariance
matrix to estimate the signal and noise subspaces. The proposed algorithm is shown to provide a
significant performance improvement over the traditional ESPRIT algorithm for FM sources,
specifically in situations with closely spaced sources and low Signal-to-Noise Ratios (SNR's).
Simulation results are provided to illustrate the performance of the proposed approach in
scenarios with multiple narrowband chirp sources.

7. Automatic Classification of Auto-and Cross-Terms of Time-Frequency
Distributions in Antenna Arrays

The problem of selecting auto- and cross-terms of time-frequency distributions (TFDs) of
nonstationary signals impinging on a multi-antenna receiver is considered. A detection approach
is introduced which allows performance measurement and comparison of various schemes via
receiver operating characteristics. Array averaging and array differencing techniques are both
employed to form a basis for time-frequency point selection. The proposed classification method
is evaluated against the bootsrap-based method. It is shown that the former offers improved
performance and simplified implementations.

8. A New Approach to FM Jammer Suppression for Digital Communications

We have considered the problem of FM jammer suppression in digital communications.
It is pointed out that the cyclic auto-correlation function, commonly used for cyclostationary
signals, and the ambiguity function, typically employed for analysis and recovery of
nonstationary signals, such as FM, have the same formulation. However, nonstationary and
cyclostationary signals have distinct localization properties in the time-lag frequency-lag domain,
and this property can be effectively used for jammer suppression. Utilizing the spread of an FM
jammer signature beyond that of the communication signal, one can select the jammer-only time-
lag frequency-lag points for effective jammer spatial signature estimation. Suppression of the
jammer signal is then proceeded by projecting the received signal to the jammers' orthogonal
spatial subspace. Simulation examples for the recovery of BPSK signals in the presence of strong
and moderate FM jammers are presented.
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Characterization of Near-Field Scattering Using

Quadratic Sensor-Angle Distributions

Gordon J. Frazer and Moeness G. Amin

Abstract

We introduce the quadratic sensor angle distribution (SAD) for near-field source characterization.
The SAD is a joint-variable distribution and a dual in sensor number and angle to Cohen’s class of
time-frequency distributions. It provides the power at every angle for each sensor in the array. In
this distribution, near-field sources have different angle for each sensor. We use a known test source
to illuminate the local scatterer distribution we wish to characterize. The high-power test source can
be removed via orthogonal projection so as to reveal the less powerful local scatter. It is shown that
the eigen-decomposition of the quadratic representation of SAD lends itself to source representation via
multiple subarray beamforming. The SAD can be used to clearly identify scatterers on the array axis
both within and beyond the array extent. Distinction between far-field spatial spread source and near-filed

point source can also be easily achieved.




I. Introduction

In this paper, we propose a new method for characterizing the near-field electromagnetic
scatter local to a linear equi-spaced array of electromagnetic sensors. The particular application
is from the area of high frequency surface-wave radar, although the proposed method may be
also applied in other sensor array applications, provided the array is linear and equi-spaced and
the local scatterers are in the near-field.

Surface-wave radar is an emerging coastal and exclusive economic zone surveillance technol-
ogy. Surface-wave radar systems used in this role are located at a land-sea boundary and use
surface-wave propagation and the conductivity of sea water to detect and track targets across
water beyond the line-of-sight radar horizon. Detection and tracking of small surface vessels can
be achieved at ranges in excess of 200km where the optical horizon may be no more than 20km.
These radars operate in the congested lower HF (approximately 3-10MHz) section of the elec-
tromagnetic spectrum. The systems with which we have experience use floodlight transmission
and an array of receiver sensors. A mix of classical digital beamforming, space-time adaptive
processing, and high resolution angle algorithms are used to determine target direction.

A typical surface-wave radar receiving array may consist of between 8 and 64 sensors and can
be 500m or 1km in total length. It is typically sited on a coastal beach which may or may not
provide a uniform transition from land to sea. For example, the coast may in fact be a bay in
which case the land sea boundaries beyond either end of the array may cause near-field scattering
and distort the wave-front arriving at the array. There may be other locally sited structures, such
as buildings and fences, which can be the source of local scatter (consider that the wavelength
of the radar signal is between 30-100m). This makes achieving very low sidelobe spatial beams
with a classical Beamformer a difficult problem and can render the receiver system vulnerable to
interference through beam sidelobes (possibly via skywave propagation).

The near-field scatter produced by these mechanisms are correlated with the desired direct
far-field radar return from targets (and clutter). This scatter is typically approximately 20-
40dB weaker than the direct signal. Without mitigation it is possible to achieve classical beam
sidelobes of 30-35dB, however in general the remaining components of the receiving system can
sustain substantially higher performance [1].

A method is required that can mitigate the effect of local scatter so that the radar system can
realize the inherent sidelobe capability as set by the radar equipment [1]. An important part of
this strategy is to first characterize the local scatter distribution. A means of performing this
characterization is the subject of the work we present in this paper.

Breed and Posch introduced the spatial Wigner distribution (SWD) as a tool for determining
the range and angle of a near field source [2]. They exploited the property that the phase front




of a wave emanating from a source in the near field of an array has an approximately quadratic
phase law, or equivalently an approximately linear spatial frequency law. The true propagating
wave phase front is in fact spherical and is only approximately quadratic for near field sources
some distance from the array, and therefore, the method in [2] breaks down for sources close to
the array.

A comprehensive treatment of SWD was given by Swindlehurst and Kailath in [3]. They
included an examination of the applicability of the quadratic-spherical approximation and use
a parametric high resolution technique to determine the linear frequency law parameters (and
hence the near-field source position).

More recently a related but altogether different spatial time-frequency distribution (STFD)
was introduced in [4], [5]. This is a true spatial TFD in that individual entries in the array
spatial covariance matrix are replaced by time-frequency representations of the energy comprising
these entries (both auto and cross) throughout the interval T. This approach has been applied
successfully to two challenging array proceésing problems; blind signal separation and angle
estimation.

There is a substantial body of literature concerned with processing spatial signals received by
an array of sensors from sources in, the near-field of the array, e.g. [6]. It is mostly concerned
with techniques for estimating the angle and range of the source. Both a subspace method and
a maximum likelihood algorithm are presented in [7].

Several authors have proposed methods for determining the angle of distributed sources lo-
cated in the far-field of an array [8], [9]. These techniques address the effect of scatter local to a
transmitter in the far-field and not for scatter that is sufficiently local to the receiving system to
be in the near field of the array. In this paper, we propose a generalization of the spatial Wigner
distribution introduced in [2], combined with orthogonal projection techniques for the character-
ization of the structure of local electromagnetic scattering induced by the near environment and
mutual interaction between sensors in the array. We use a known test source to illuminate the
local scatterer distribution we wish to characterize. The high-power test source can be removed
via orthogonal projection so as to reveal the less powerful local scatter. It is shown that the
eigen-decomposition of the quadratic representation of SAD lends itself to source representation
via multiple subarray beamforming. The SAD can be used to clearly identify scatterers on the
a,rray axis both within and beyond the array extent. Distinction between far-field spatial spread
source and near-filed point source can also be easily achieved.

This paper is organised as follows. In section 2, a signal model for far-field and near-field
sources are presented. Both point and spatial spread sources are considered. The sensor-angle

distribution is introduced in section 3. The source range and angle expressions viewed by each




sensor are presented in section 4 using the geometrical relation between the source of interest
and the array. Exact and least-squares maximum estimates of the source range and angle,
along with Cramer-Rao bound, measured from the center of the array using the respective SAD
estimates at each sensor are also derived in section 4. Alias-free implementations and subarray
beamforming interpretation of the SAD are delineated in Section 5. Section 6 includes simulations

demonstrating the offerings of the SAD in near-field source characterization.

II. Signal Model
A. Model

Our proposed measurement technique requires one cooperative source, S, with complex enve-
lope 53, in the far-field of the array at known angle 6° and where k denotes time index. Consider
a linear equi-spaced array of M sensors, where sensor position errors are negligible and the gain
and phase of all sensors are accurately matched. Steering vectors for the far-field a(f) and near-
field a(f,r) take on the standard form with € being the angle. For the near-field steering vector,
r denotes range [10].

Assume that the conditions on the test source and sensor array are such that the following

signal model is appropriate
zx = ASyk + qx + ng (1)

In this model, zy is a vector of dimension M, representing the k*» snapshot of sensor outputs. The
vector qy consists of additive spatial and temporal coloured noise produced in the environment,
and ny represents additive white noise modeling the internal noise of the array of sensors receiving
system.

The matrix A can take on one of two forms, depending on whether the local scatterer is best
modeled as a collection of P discrete point scatterers, or as a single spatially distributed scatterer.

For the case of P discrete scatterers
A= [a(GS), a(01, r1), ce ,a(9i, ri) v ,a(0p, rp)] (2)

In the above equation, the near-field scatterer 1 = 1,... , P is characterized by the angle 6; and
range 7;. In the case of a distributed scatterer contained in the near field azimuth and range set
2, with reflectivity, Rn(6,r) and with respect to a reference location (6y, 7o)

0 JoRa(0 —6o,r' —ro) - a(f' — bp,r' —ro) d6'dr’
a (00,1’0) = (3)
| foRa(0' — 6o,x' —ro) - a(f — fp,r’' —ro) d&'dr||

and hence

A = [a(65),2% (60, r0)] (4)
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Likewise, the signal vector Sy can be constructed in two ways, depending on whether the

near-field scatterers are best modeled as discrete or distributed. For the discrete case,
Sk = sk, sk, 58] (5)

where the test source complex amplitude is given by si and the complex amplitude of the it* of

P discrete scatterers is denoted as si. In the distributed scatterer case,
Sk = [Sls(,Sﬂ] (6)

The s} and si and sg may be uncorrelated or correlated for each case respectively.
The i** element of the steering vector for the far-field source (the first column of A) a(65)
takes on the standard form
2nd M-1
a;(6%) = exp ——j—7r—— sinf5. [(i—1) — —— (7
A 2
whereas, in the case of any near-field source or scatterer, the i element of the steering vector
a(fs,rs), is given by
1 2T
ai(rs, s) " exp ( Iy rs,,) (8)
assuming a normalized and equal gain for each sensor.

The spatial environment is characterized by the spatial covariance matrix Ry m, where
Rim=ASk mAR+ Qum+0%I | (9)

with Ry ;m = E[zxzh], the source covariance Sy m = E[sksti], and the noise covariance Qg m =
E[qkqll]. Assume that sy, qx and ny are uncorrelated, that Sk,m = S0k—m and Qx.m = Qk—m,
and that Sdx = Sé and Qdx = Qdy for k different from k’. In this case S, Q and hence R
are temporally white and stationary, and as such we can remove the dependency on k& and m.
These assumptions are not in fact strictly required but we include them in order to reasonably
bound the class of signals we consider in the subsequent discussions. The variance of the receiver
internal noise is 02. Individual elements of matrix S are denoted as p;;.

We ensure that the cooperative test source has sufficient signal to noise ratio (generally greater

than 50dB) to perform our measurement by requiring that

Psnr = —2—/)1—1‘——"
(o2 +tr[Q])

It is also expected that the direct far-field source power will be substantially greater than the
total near-field power (by 20-40dB), i.e, '

>>1 (10)

p11

por= =P 55 (11)
snf Zf:Z Pk .k
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III. Sensor-Angle Distributions

The proposed method uses an extension to the spatial Wigner distribution originally introduced
by Breed and Posch [2]. To avoid confusion, it has been necessary to change the name to reflect
the generalization to all members of Cohen’s class of quadratic distributions [11]. While the
title “spatial Wigner distribution” is informative, retaining the name “spatial time-frequency
distribution” for the remaining members of Cohen’s class applied to spatial signals does not
correctly describe the distribution we are interested in. Therefore, in this work, we have renamed
the class of quadratic distributions applied to spatial signals to be sensor-angle distributions
(SAD). The corresponding spectra are called sensor-angle spectra (SAS).

The Cohen’s class SAD for the k** snapshot is a distribution of the angle of sources impinging

on the array at each sensor,

oo [}

Ti(i,6z)=)_ > ¢(m,Dzi(i+m+1)zi(i + m—1)e 34 (12)

l=—00 m=—00
where 7 and 6 are the sensor index and angle respectively. The kernel ¢(m,!) characterizes the
distribution and is a function of sensor position, m, and sensor lag, . All the standard data-
independent or data-dependent kerneél designs applied in the time-frequency literature may be
used with the SAD [11].
The sensor-angle spectrum (SAS) is the power (not energy or energy density) distribution of

the sources impinging on the array. The SAS is given by
T(i, 6; 21) = B[T(i, 6; 21.)] (13)

where an estimate for temporally stationary sources is given by

1 N-1

T5(,0;21) = N > Tli, 6; 7i) (14)
. k=0
for N snapshots.

The objective is to the SAD (or SAS) to characterise the near-field scatterers of a far-field
source signal. We expect the test signal to be substantially more powerful than the local scatter
we wish to characterize (see (11)). With the knowledge of the far-field source angle-of-arrival,
a spatial filter can be designed to remove its dominance, allowing a clear depiction of the near
field source in the sensor-angle (s-a) domain. Alternatively, a simple technique is to project the
sensor data on the orthogonal subspace of the far-field source spatial signature. In (12) and (13),
the data snapshot zy is replaced by Pz where P is the orthogonal projection operator formed

from the test source steering vector a(6%) as

P =1-a(6%)[a"(6%)a(6)] *a"™ (%) (15)




Therefore, we compute the SAS
T5(1,6; P)| s (16)

associated with a test source in the far-field of the array at angle 65.
In some applications; a single test angle will provide sufficient characterization using (16)
while in other applications, two or many test angles will be required, in which case the full

characterization is given by
T5(,6, P(6%)) (17)

as 6% is scanned over the required domain of angles for the test source.’

IV. Range-Angle Estimation from SAD
A. Geometry
A.1 Assumptions

Consider a linear equi-spaced array of M sensors placed on a flat plane in a two dimensional
surface. Assume that sensor position errors are negligible and the gain and phase of all sensors
and corresponding data acquisition equipment are accurately matched. Assume that the array
is narrowband, i.e., the reciprocal of the bandwidth of any signals received is large compared
with the propagation delay across the array. The wavelength of all sources received is A. Let the
origin of a coordinate system O be at the mid-point of the array, with the sensors individually
spaced by d regularly along the x-axis and indexed i = 1,... , M from left to right. We assume
that d < % Boresight is along the y-axis.

A source is placed in the near-field (i.e. a circular wavefront impinges on the array) at location
rs meters from the origin and 6, degrees from boresight. We define that angles are to be measured
clockwise from array boresight (the y-axis). For M odd, there is a sensor at the origin, whereas
for M even, the origin is midpoint between two sensors. The array geometry and the notations

are shown in figure 1 for the case of M = 8.

A.2 Sensor angle for a source at (rs,6;)

The physical position of some point along the axis of the array, with respect to an origin O at

the midpoint, is denoted z. The position of the i** sensor in the array can be written

z=d-[(i—1)—M—2"—l-] fori€{1,...,M} (18)

The distance from position z to a source at (s, ;) is

rsg =122 —2 15+ z-sinf +r2 (19)




with the angle given by

05z = cos™!

(20)

?+ri, - rf]

2-T-7154
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Substituting equation (19) into equation (20) eliminates the dependency on 7, so that 6 4,
which is the angle from position z to the given source at (rs,8s), may now be written directly in

terms of the source location

: z—1rs-sinf T
6z = cos™? 2 = - = 21
>* [\/x2—2-rs-m-sin65+r§ 2 2D
A specific case of interest is the angle at each sensor, which may be expressed as a function of
the source location and the sensor number i € {1,... ,M}.
05 = ©(i,rs,05) for a given d and M (22)

Substituting equation (18) into equation (21) gives a direct expression for the angle at the it*

sensor to a source at location (r,0s)

O(i,rs,0;) = cos™! G (O 2 S _r
VId- [6-10) =22 — 2.7, - [d- [6- 1) - %22])] -sinf, + 2] 2

(23)

A.3 Source location from sensor angle

Given knowledge of the sensor-angle at any two or more sensors, it is possible to determine the
range and bearing (rs,0;) of a source. This is, however, subject to identifiability requirements
that each sensor has a different angle to the source, which is in fact a requirement that the source
be in the near-field of the array. Given 6,; and 6, ; with 7 # j, one determines sensor to source

ranges 7s; and rs ; respectively using

PR %)
rsi =i —j]]-d sin[0; ; — 0; ;] 0
ahd
o cos[f; ;
rsg =i —7Jl]-d 2 )

Sin[es’i - 95,3']
This requires that 6;; — 6, ; # 0. The range and bearing with respect to the origin can be
determined relative to any of the individual sensors using the individual sensor range and bearing.

For example, for the j" sensor, we use 7, ; and 65 ; according to

— 2 —
e —[j-l]]-d] —2ry;- [[M—Z-l-[j-u]-d] sinf,;  (26)

2
"'3 =715+ [




and

6, = cos_l[% cos 65 ;] (27)
S

A.4 Estimating source location

Alternatively, an estimate for source location can be determined given estimates of the sensor

angle és,i and equation (23). The least squares estimate for source location is

(#L5,655) = arg min [Z[@s,, — O(t,7s, 05)]2} (28)
7s,0s i
and, under the assumption
[65i — 85,4] = N(0,07) (29)
then the maximum likelihood estimate for source location is
(FYTEF,61EF) = arg min [Z[és,i - 0(,rs, 05)12} (30)
5,05 i

B. Cramer-Rao Bound for Location from Sensor Angle Measurements

Estimating the angle to a source at each sensor from a spatial signal is analogous to estimating
the instaglta,neous frequency (IF) of a single component time domain signal. Numerous techniques
for estimating IF have been proposed, including methods based on model fitting of unwrapped
phase estimates, and from extraction of the peak value at each time in particular time-frequency
distributions [12]. More recently a technique using iterative linear representations of the signal
has been proposed based on the cross polynomial Wigner distribution [13].

Performance bounds for IF estimation are given in [14] and a comparison of several IF esti-
mation techniques with respect to the Cramer-Rao lower bound (CRLB) is givexi in [13]. These
results are applicable for high signal to noise ratio cases and include expressions for bias and
variance in the overall frequency function of time estimates (and not at one instant of time).
These results show that the estimate will be biased for IF laws other than constant or linear
(using a second order TFD) or for a polynomial IF law of order greater than the order of a
polynomial TFD.

Recently, expressions for the bias and variance of IF estimates based on extracting the peak
of a TFD at each time have been developed for the case of low signal to noise ratio (SNR)
[15]. These results explain the outlier behaviour frequently observed when using peak extraction
algorithms at low SNR. The authors have partitioned the error behaviour into two mechanisms,

corresponding to high and low SNR, and provide insight into when each mechanism applies.




Regardless of the particular IF estimation technique, the aforementioned performance bounds
governing IF estimation at each data sample can be applied to the problem of determining the
localization performance for a near-field source, in range and angle, using sensor-angle measure-
ments. Given knowledge of the IF (or sensor-angle) estimation error, we now derive the CRLB
for the location of the source in range and angle.

The assumption that the sensor-angle measurement estimate errors are Gaussian and indepen-
dent (high SNR case) (equation (29)) can be re-stated as the following sensor angle measurement

model

~

0s5:=0(i;7s,0s) +w; fori € {1,... ,M} (31)

where w; ~ N(0,0?) and E[w;w}] = aizéi_i: and where the variance of w; may be different for
each sensor 4. The assumptions of Gaussianity and of independence of angle measurements at
different sensors are discussed in [16] in the time-frequency context. These assumptions may not
be satisfied for all members of SAD [15], however, they simplify the CRLB derivations discussed

in the following section. Let
y =101, ,0sm]T (32)
be the vectqr of sensor angle measurements and let
O(rs,05) = [O(1;15,6),... ,0(M;rs,6,)]T (33)

be the vector of predicted measurements. The likelihood and log likelihood functions for this

model are
M
1 1 7. 2
P(Y i70,05) = exp (507 [fea - 037 0] ) (5)
1:1 27o? 20} [/SI ) ]
and
M M 1 N ) 2
Inp(y;rs,6s) = — zi:ln[v 27 - gy] — Z 5}? [os,i —O(i;rs, 65)] (35)
Or, in vector form using equations (32) and (33) and with & = diag(o?,... ,0%,) (where diag is

the square matrix with the specified entries along the diagonal and zero elsewhere) we can write

equation (34) as

y ~ N(O(rs,6s), %) (36)
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To determine the CRLB we require the Fisher Information matrix (FIM) (for the two parameters

to be estimated rs and 6;)

821 irs,0s) 8?1 irs,0s)
I(rs,0,) = ~E{T] B[Rl (37)
’ 02 Inp(y ;rs,0s 82 Inp(y;rs,0s
-E(Tplnb)) _p[flpg )
For the particular case of a model of the form of equation (36) the FIM simplifies to [17]
00( r,,ﬂs a9( 3,0, 99( r,,05 80(rs,05s
I o e i e Bl i e R b (38)
s1vs Ts,0s O(rs,fs s,Us I's,lUs
[——l]Tz " ‘ f Jl [%g; T g 2O ]

and 27! = diag(;lg, N ——5—) The individual elements of I(rs, 65) in equation (38) can be written
1

in terms of the sensor elements as

M 3 . . .
I(rs’os)l,l = Z —l—a@(l : rs’es) 6@(1,1-5,05)

39
P o? Ors Ors (39)
M .
1 00(i;rs,05) 0O(i;rs, 0
I(rs,05)12 = E;E (ar ) (60 ) (40)
l=1 i S s
M
1 00(i;rs,0s) 00(i;rs, 0
T(re,Or)z0 = Y oy oo ire8e) 000 e, ) ()
i=1 1 s s
M
1 006(i;rs,0s) 00(i;rs, b5
(e O0)22 = ) o inente) O0UsTs, ) 42)
l=1 i S S

This requires that the partial derivatives of equation (23) with respect to the location parameters
(rs,05) be evaluated

. _ (___ sinfs _ (z=1s sinGs)(—2xsines+2rs))
00(i;rs,05) N VxZ-27, zsinfs+rs2 2.(2—27, zsin fs+r,2)3/? (43)
Ors \/1 _ __(z—rs sinfs)®
T2 -2715 T 8in 0847142
and
. _ ( Ts 058 (z—7s sinfs)rs z cos b5 )
8@(2 1T sy 05) _ V2275 sinO, 47152 (z2—27, zsin 03+T82)3/2 (44)
00, \/1 (z—rs sinf;)?
2227, xsinOg+rg2

withz =d- [(i-1) - #] fori € {1,... ,M} (as in equation (18)). Let equation (37) be

re-written as

(45)




where the individual elements are determined using equations (43) and (44), evaluated at a
particular (rs, ;) of interest, substituted into equations (39) through (42), where the o? are the
variance of the angle measurement at each sensor. The Cramer-Rao lower bounds for estimates

of 75 and 6, are, respectively

~ I(rS7 95)2 2
var(fs) > 2 46
() 2 (e 0011 - 1(re, 8e)2.2 — L(re,0o)na 1(re,0)2] (46)
and

= [I(rs,05)1,1 - I(rs,05)2,2 — I(rs, 05)1,2 - I(rs,05)2,1]

The CRLB is a function of the source location. For one particular array configuration and sensor-
angle estimate variance at each sensor, the variation of CRLB for source location over a grid of

possible source locations is shown in figures 2 and 3.

V. Implementation
A. Alias-Free SAD

In practice, implementing the SAD directly using the previous definition has proven undesir-

able. This can be seen by rewriting equation (12) as
Ty (i, 0;2k) = F [Kq, (i,1) * ¢(i, 1)] (48)

where
Ky, (4,0) = zic(i+ Dz (i - 1) (49)

(F denotes Fourier transform in the variable [ — 8 and * denotes convolution in the variable 3.)
The sensor position (index i) dependent lag (index ) sequence, Ky, (i,1), is evaluated at even
lag intervals only (i.e. where the lag spacing between sensors is even). This under-samples the
true position dependent lag sequence and causes aliasing in the resulting SAD for many source
locations.

It is possible to correct the aliasing problem by oversampling the spatial signal by two (i.e.
space the sensors by d = %) or by interpolating the d = % sampled spatial signal. Oversampling
is frequently impractical as it doubles the cost of the array. Interpolation is also undesirable
because sensor arrays frequently have a limited number of sensors (M) and the array “end”
effects associated with interpolating the finite extent spatial signal corrupt the resulting SAD.

A more satisfactory approach is to exploit the results of Jeong and Williams [18]. By rotating

the domain of K, (4,!) and ¢(¢,1) by -45° it is possible to construct values in ¢(i,l) corresponding
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to odd interval lags in K, (3,). Let

Ky, (i1,42) = 2y (i1)zk (i2) (50)
and
. m+1l m-—1
¢'(41,42) = p(———5—) ’ (51)
2 2
for sensors i; and i3. The rotated K, contains the |ij —ds| € {... ,—2,0,2,...} lag values

corresponding to the even lags determined in equation (49). It also, however, contains the
missing odd lag samples (|i; —i2| € {...,—3,—1,1,3,... }) required to avoid aliasing. Similarly,
the kernel ¢'(i1,12) is evaluated on the rotated (i1,42) domain and likewise provides support for
the missing odd interval lag values. These values may be interpolated from the even lag kernel
samples, or, exactly computed from the definition of the kernel sequence. Note that the rotated

kernel ¢'(31,12) has a larger extent than prior to rotation. Using this approach it is possible to

compute an approximately alias-free SAD [19].

B. Quadratic SAD

Cunningham and Williams [20], and Amin [21], have shown (in the context of time-frequency
distributions) that it is possible to express Tk(i,6;zx) in quadratic form as a weighted sum of
spatial beamformers. Let the eigen-decomposition of the rotated (or alias-free, see equation (51))

kernel be given as
¢'(i1,42) = VEVH (52)

where the columns v; (for j € {0,... ,J —1}) of V are the J eigenvectors of ¢’ and the diagonal
entries of matrix ¥ are the corresponding eigenvalues, og, ... ,05-1. Due to the use of the rotated
kernel ¢'(i1,%2), J = 4L + 1, for a given maximum lag extent L in the non-rotated cone-shaped
kernel ¢(m,l). The SAD may be written as

J-1
Tx(i, 0;2x) = Z aj|vj . zk,i|2 (53)
o

where zx; is the (possibly zero extended) spatial sequence surrounding sensor i for the kth
snapshot. Due to the rapid drop in the eigenvalues of commonly used kernels, Ty(i,6; zk) can
be well approximated as Ty (i,0;2y) by using few terms J' (J' < J) in equation (53). This
approximation is discussed fully in [21}.

Equation (53) can be interpreted in the context of classical beamforming using subarrays.

A subarray beamformer constructs multiple sub-beams using classical beamforming applied to
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subsets of sensor elements in the array. Typically, the sensors in a subarray are adjacent. The
sensors corresponding to adjacent subarrays may or may not overlap within the full array. A
given subarray beamformer estimates the spatial spectrum local to the position of the subarray
within the full array.

At each sensor index i, equation (53) is a weighted sum of multiple beamformers evaluated
using the same spatial signal zj ; surrounding sensor ¢ (which may include the case where the
full spatial signal zy is used). This weighted sum at sensor 7 is a representation of the spatial
spectrum at sensor ¢ (i.e. the SAD). It has similar form to a classical subarray beamformer,
although differs in two distinct ways. Up to J beamformers are determined at each sensor (not
one) and the structure of the beamformer weights and the combining ratios are prescribed by
the SAD kernel ¢'. It is important to note that the J' subarray beamformers can be applied to
J' consecutive snapshots, providing that the source maintains its signal value over J' samples.
A source with constant modulus property will naturally satisfy this condition. This flexibility
does not exist in a typical application of time-frequency analysis. A deviation from the constant-
modulus property has the effect of changing the eigen-decomposition by scaling the eigenvalues
in equation (53). We should note that a change in the signal phase does not alter the magnitude
squares of equation (53). The ability to apply each term of the approximation in equation (53) to
a different snapshot, instead of the same data vector, reduces computational time and hardware

requirements.

VI. Simulations

In this section, we demonstrate the proposed approach for near-field scatter characterization.
Consider a 64 sensor linear equi-spaced array operating at a carrier frequency of 6.14MHz (A =
46.8m) with 15m spacing between sensors. The local scatterer distribution comprises a point
scatterer in the near-field at range 1200m and angle -30°, from the array center (the array has
total length 945m). Assume the test source angle is 20° with respect to boresight and that
the test source is temporally stationary and coherent with and 26dB strdnger power than the
scattered source. In this example we have used the Wigner distribution so that the kernel in (12)
is 6(m). Of course, other members of Cohen’s class may also be used. V

Figure 4 shows the SAD for the received data. The plot shows the received power (plot
intensity) as a function of angle (spatial frequency) on the vertical axis and sensor position
within the array on the horizontal axis. The spatial frequency axis extends beyond the interval
=+1 since the sensors are spaced more closely than ﬁ2\- The SAD is dominated by the substantially
more powerful far-field test source and there is no clear indication of any additional scattering.
The far-field source has the same angle for every sensor, and therefore, depicts a horizontal

signature in the s-a domain. In figure 5, we have applied the orthogonal projection operator to

14




the received sensor data and computed the SAD for Pzy, as per equations (15) and (16). The
SAD now clearly shows the presence of near-field local scatter. In this case, the location of the
near field source is far enough from the array for the quadratic phase approximation used by
Breed and Posch to be valid (i.e. the sensor v. angle relationship is approximately linear).

The beampatterns, computed using a 70dB Taylor window, for the cases of zx and Pzy are
shown in figure 6. From the plots, the presence of near-field scatter cannot be confirmed as
compared with alternative explanations for the distorted beampatterns, such as poor array cali-
bration.

Now we wish to demonstrate the use of the alias-free summed beamformer SAD described
in equation (53). Again the simulations assume a 64 element linear equi-spaced array, with
operating frequency and sensor spacing as before.

In the first simulation, a far-field source was placed at angle 30° (all angles are with respect
to array boresight) and a near-field source placed at a range of 100m and an angle of -40°. The
Choi-Williams SAD (o =100) implemented using the alias-free rotated kernel form is shown in
figure 7. Signals apparently arriving from spatial frequencies greater than 1 or less than -1 do
not correspond to real signals. The crosses marked on the figure indicate the true angles of each
source at every sensor. |

The weighted summed beamformer implementation of the Choi-Williams SAD described in
equation (53) has been computed for the same scenario as in figure 7. The result is shown in
figure 8 for the case where J' =25 and J =65 (i.e. 25 beamformers have been retained out of a
possible total of 65). Note that visually, there is no apparent loss of fidelity using the approximate
SAD. This implementation has substantially lower computational complexity.

The simulation results shown in figures 9 and 10 are for the case of two near-field sources. In
figure 9, one source is placed at a range of 300m and an angle of 30°, whereas the second is at
a range of 200m and an angle of -40°. The SAD is a Choi-Williams kernel implemented using
weighted summed beamforming with J/=25 and J =65 (i.e. 25 of 65 retained). Note the presence
of cross terms between the two source sensor-angle signatures. The Choi-Williams kernel is well
known to perform poorly in terms of cross term suppression for the case when the underlying
signals are other than close to parallel to either the sensor (time) axis or the angle (frequency)
axis in the SAD (TFD).

The results presented in figure 10 again show the result of a SAD using a Choi-Williams kernel
implemented with the 25 term weighted summed beamformer. There are two near-field sources
and the source positions have been selected to be along the axis of the array. The first source
is at 300m and 90° while the second is at 600m and -90°. The first source is embedded within

the array and co-located exactly at a sensor position. The second source is beyond the lefthand
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extent of the array. The first source has been localized at exactly the correct sensor within
the array (at 300m from the array center). Near-field spreading loss (1/r) between sensors has
caused the source intensity to drop dramatically at adjacent sensors. The corresponding dual
time-frequency domain signature is that of an impulse. The second source is again correctly
represented as being at -90° to the left end of the array. Notice that the 1/r spreading loss for
the near-field source means that the SAD has stronger intensity at the left end of the array. This
is the degenerate near-field situation, where even though the source is in the near-field of the
array, the angle to each sensor in the array is identical.

The simulations shown in figures 11 through 16 contrast the cases of point sources in the far
and near-field and a spatially spread source in the far-field. Traditional beampatterns (computed
using a 70dB Taylor weight) show that it may be difficult to discriminate between spatially
spread far-field sources and a near-field point source. Using the SAD, one is clearly able to
visually separate these cases (contrast figures 14 and 16). Note that the spatially spread source
was generated using 20 realizations of a low pass noise process modulating the spatial steering

vector corresponding to the mean angle for the spread source.

- VII. Conclusions

We have proposed a new method for characterizing near-field scatter local to a receiving array.
As part of the characterization, we have exploited and generalised the spatial Wigner distribution
proposed by Breed and Posch, although we have renamed it the sensor angle distribution to avoid
confusion with a similarly named but differently defined spatial time-frequency distribution. An
orthogonal projection operator derived from the steering vector for the far-field test source is
used to exclude the direct propagation path from the test source in the characterization.

This paper has addressed several issues concerning the use of the Sensor-Angle Distribution
(SAD) as a tool for characterizing near-field scatter environments.

An expression has been derived describing the angle to a source or scatter site from each
sensor in an array. Formulas are given for least squares, and, under certain conditions, maximum
likelihood estimates of source location based on source angle measurements such as those obtained
from a SAD.

The use of a rotated smoothing kernel has proven effective at overcoming aliasing in the SAD
caused by the spatial frequencies obtained for realistically positioned sources.

An approximate method for implementing the SAD has been found to have a direct interpre-
tation in terms of a multiple subarray beamformer. However, the weighting functions applied to
the beamformer, and the fact that more than one beamformer is combined to construct the final
spatial spectrum at each sensor is an extension of present subarray concepts.

The SAD presented in this paper assumed the use of a data-independent sensor-angle kernel,
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as reflested in equation (12). It is important to note that data-dependent kernels can also be
employed in the SAD. Positive time-frequency distributions [22], optimum time-frequency kernels
[23], and the time-frequency reassignment method [24] can all be cast in terms of the two new
variables, sensor and angle, leading to potential improvements over equation (12) in resolution

and cross-term suppression.
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Appendix
I. Cramer-Rao Bound for Location from Sensor Measurements

Consider the received signal model
Zx = a- Sk + Wi (54)

where k is the array snapshot index. For the case of a single near-field source at (r;, ;) then sy
is a scalar s; and a is given by equation (8). Let the total number of snapshots be N with the
index k € {1,...,N}. The noise is additive Gaussian noise where wy = [wy,... ,WM]E which
for all received snapshots can be written W = [wy,... ,wn|. The noise is characterized by
E[wi,kw;‘,’k,] = qiz’kéi_y k- = 02, or, more completely w; » ~ N(0, 02). In this case the variance
of i** sensor may be different for each sensor i, but remains the same over all snapshots for a given
sensor. Let Z = [z1,... ,zN] be the data matrix of all received data. Let s = [s1,... ,sN] be the
deterministic source signal characterized only by the vector s. Equation (54) can be re-written

as
Z= a(rSa 95) s+ W (55)

which has unknown parameters (r;, 6;) and nuisance parameter s (which increases in dimension
as N increases).

The likelihood function for this model is

N
p(z iTs, 0, S) = H P(zk§r5a95a5k) (56)
k=1
with
Moy 1
p(zic; s, 05,86) = [ | exp (—2—2 2i,x — ai(rs, 0s) - Sk]z) (57)
i=1 27rai2 i
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hence

N | M

P(Z;rs,0s,8) = H H

k=1 |i=1 27r0i2

1

exp (———2——5 (zik — ai(rs,0s) - sk]z) (58)
i

with the log-likelihood given by

lnp(Z rsa sy8) = —NZ ln[\/__o-!] -N Z { zl k — (r57 95) : Sk]z] (59)

The FIM is conétructed from the parti'a,l derivatives of a;(rs,6;) - sy with respect to r,, 85 and
Sg. Let

Yik = 03(rs,05) - sk (60)
or
(61)

Inserting the r; ; gives

Sk e—j27"\/1'2—2rsxsin05+r§ (62)

Yik = >
" /22 —2r.zsinf, + r2
where z at each sensor position is

x=d-[(z’—1)—M—2‘1] fori € {1,... ,M} (63)

The partial derivatives are (in terms of z to improve clarity)

-'E\/T.—
ayi,k Sk - € F5rVT?—2rszsinfs+r

= 0
ors z? — 2rszsinf, + r2 [Fzsinds +7d] - [

-1 27
Vz? — 27r,zsin b, + 12 ]/\

| @

_j2r ., [p2_ : 2
ayi,k Sk € iISVe 273z sinO5+r2

s 12 —2r,xsinb, + r2

1 27
+J= 65
[\/:rz—ermsinBs+r§ J )\} (65)

- [rsz cos 6] -

i _ 1 . e~ I V2T zsinbet1? (66)

Osg, VT2 —2r,zsinfs + 12

For the case of k =1 (i.e. the single snapshot case), the individual elements of the FIM are

M ay1 k 6% k

ZM 1 Oyik OYik M 1 Oyik Ok
i=1 _2' drs Ors i=1 ;.5 drs 00, i==1 _7 Ors Osg
— M 1 Oyik Oyis M 1 9y Oyix M 1 8yix Oyix

I(rs,05,86) = | 30iZ; 5 37708, o, Yich 7 o7 06, e Dim1 s 5798, sy (67)
ZM 1 9k Oyik ZM 1 OYik Oyik ZM 1 9%k Oyik
=1 —2- ask 67‘5 1= 1-—2- ask 305 i=1 _2- Bsk ask




The CRLB for each of the unknown parameters is determined from the inverse of equation (67)

evaluated using equations (64) through (66) at the true values of the unknown parameter.

var(rs) > [I(rs, 05, )71 | (68)

var(f;) > [I(rSaGSask)];,lz (69)

var(sg) > [I(rs,OS,sk)]g,g (70)
Appendix

I. Cramer-Rao Bound for Location from Sensor Phase Measurements
Consider the case where only the phase of the received signal is recorded at each sensor. In
this case equation (61) becomes '

Yik = eI X (71)

where, as before, substituting in 7; ; gives

—q2n 2_ i 2
Yir = e J5 Vz2-2rszsinfs+12 (72)

The partial derivatives of the two remaining unknown parameters (r5,0;) are (in terms of sensor

location z)

Oyip _ .2m

_ J_[ —zsinf; + 7, ]e_jow\/m (73)
ors A [Vz2 — 27, 2sinfs + 72

By _.2m 75 T €os O ] e—I /a2 -2rs asin by 47 (74)

00, DY [\/x2—2rsxsin05+r32
The elements of the FIM are then

I _ A 1 9yik ik
(rs,0)12=Y oZ or. 00, (76)
i=1 1 s
M
1 Oyix Oyix
L(re,06)21= D 355, or, (77)
i=1 1 s




M
1 8y: 1 By
I(rs-)as)z’z = Z_. Yik OYik (78)

The Cramer-Rao lower bounds for estimates of rs and 65 based on phase only measurements at

each sensor in the array, are, respectively

A I(rS7 05)2 2
var(fg) > 2 79
( S) o [I(rSaos)l,l 'I(rs, 05)2,2 - I(rsv 05)1,2 : I(r57 95)2,1] ( )
and
N s,os
var(fy) > I(rs, 06)1.1 (80)

7 [I(rs,0s)1,1 - I(rs, 65)2,2 — I(rs,05)1,2 - X(rs,65)2.1)
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Fig. 1. Sensor array geometry and notations for a linear array and a near-field source.
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Fig. 2. CRLB (in m?) of the range to a source, for various source locations, for the case of a 64 sensor
linear array, spaced 15m between sensors. The sensor-angle is assumed to have been estimated at

each sensor with a variance of 1 deg?.

Fig. 3. CRLB (in deg?) of the angle to a source, for various source locations, for the case of a 64 sensor
linear array, spaced 15m between sensors. The sensor-angle is assumed to have been estimated at

each sensor with a variance of 1 deg?.
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Fig. 4. SAD for the received sensor data zx. The far-field test source (at angle 20°) dominates the SAD

characterization.
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Fig. 5. SAD for the received data following application of the orthogonal projection operator, Pzy.

With the direct propagation path from the far-field test signal removed by the orthogonal projection

operator, the local scatterer spectrum is revealed. The local point scatterer is at a range of 1200m

and angle of -30°.
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Fig. 6. Beampattern for zi (-~ ) and Pzx (--). Without the sensor angle characterization it is not
possible to identify perturbations from the ideal test source beampattern as being due to near-field

scatter. For example, poor array calibration may be indistinguishable from local scatter.
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Fig. 7. Choi-Williams SAD for a far-field source at angle 30° and a near-field source at range 100m and

angle -40°. True angles for each source at every sensor are marked by crosses.
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Fig. 8. Approximate weighted summed beamformer SAD for a far-field source at angle 30° and a near-
field source at range 100m and angle -40°. In this case 25 of a possible 65 beamformers are summed

together (see equation (53)).
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Fig. 9. Approximate weighted summed beamformer results for two near-field sources at 300m and 30°

and 200m and -40°. 25 of a possible 65 beamformers are summed together.
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Fig. 10. Approximate weighted summed beamformer resnlts for two near-field sources where the sources

are aligned along the axis of the array at 600m and -90° and 300m and 90°.
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Fig. 11. Beampattern for a far-field point source at angle 20°.
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Fig. 12. Approximate weighted summed beamformer SAD (J' =25 and J=65) result for a far-field point

source at angle 20°.
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Fig. 13. Beampattern for a near-field point source at range 800m and angle 20°.
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Fig. 14. Approximate weighted summed beamformer SAD (25 of 65) result for a near-field point source

at range 800m and angle 20°.
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Fig. 15. Beampattern for a far-field spatially spread source with mean angle 20°.
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Fig. 16. Approximate weighted summed beamformer SAD (25 of 65) result for a far-field spatially spread

source with mean angle 20°.
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Improved Blind Separations of
Nonstationary Sources Based on

Spatial Time-Frequency Distributions

Yimin Zhang and Moeness G. Amin

Abstract

Blind source separation based on spatial time-frequency distributions (STFDs) provideé improved
performance over blind source separation methods based on second-order statistics, when dealing with
nonstationary signals that are localizable in the time-frequency (t-f) domain. In the existing STFD meth-
ods, the covariance matrix is first used to whiten the data vector, then the mixing matrix and subsequently
the source waveforms are estimated using STFD matrices constructed from the source t-f autoterm points.
This letter improves the STFD-based source separation method by performing both whitening and esti-
mation steps using the source t-f signatures. This modification provides robust performance to noise, and

allows reduction of the number of sources considered for separation.
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I. Introduction

Several narrowband blind source separation (BSS) methods have been proposed in the
literature [1], [2], {3], [4]. Generally, blind source separations for independent sources are
performed based on the employment of at least two different sets of matrices that span the
same signal subspace. One matrix is used for whitening purpose, while others are jointly
used to estimate the spatial signatures and source waveforms impinging on a multi-antenna
receiver. Covariance matrices with different time lags, or cuamulants matrices with different
orders are typically used for the above purpose.

Nonstationary signals are frequently encountered in radar, sonar, and acoustic applica-
tions [5], [6]. For nonstationary signals, time-frequency distributions (TFDs) have been
recently employed for array processing and found successful in blind separations of nonsta-
tionary signals [7], [8], [9], [10], [11], [12]. These methods are particularly effective when
the signals are highly localized in the time-frequency (t-f) domain. In these methods, while
the spatial time-frequency distribution (STFD) matrices are used for source diagonaliza-
tion and anti-diagonalization, the whitening matrix remains the signal covariance matrix.
The STFD matrices are constructed from the auto-TFDs and cross-TFDs of the sensor
data and evaluated at different points of high signal-to-noise ratio (SNR) pertaining to the
t-f signatures of the sources. Although this method improves the performance over that
based on solely the covariance matrices, yet it does not fully utilize all inherent advantages
of STFD.

This letter modifies the existing STFD-based BSS methods by performing whitening
using an averaged STFD matrix over the source t-f signatures and, as such, making use of
the t-f localization properties of the sources in both the whitening step and joint estimation
step of the source separation procedure.

Employing the STFD for whitening leads to robustness of subspace decompositions to

noise and, thereby, enhances the unitary mixture representations of the problem. It also
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applies equal source discrimination and allows the consideration of the same subset of

sources in both the whitening and joint-diagonalization phases.

II. Signal Model

In narrowband array processing, when n signals arrive at an m-element array, the linear

data model

x(t) = y(t) + n(t) = Ad(t) +n(?) (1)

is commonly used, where A is the mixing matrix of dimension m x n and is assumed to be
full column rank, x(t) = [z1(t), ..., zm(t)]7 is the sensor array output vector, and d(t) =
[d1(t), ..., dn(2)]T is the source signal vector, where the superscript 7 denotes the transpose
operator. n(t) is an additive noise vector whose elements are modeled as stationary,
spatially and temporally white, zero-mean complex random processes, independent of the
source signals. |

The covariance matrix is given by
R,y = E[x(t)x¥(t)] = Ryy + 0l = ARgA" +0I, (2)

where E(-) is the statistical expéctation operator, the superscript # denotes conjugate
transpose, Rqq = E[d(t)df(¢)] is the signal covariance matrix, o is the noise power at
each sensor, and I denotes the identity matrix. We assume that Ryx is nonsingular, and

the observation period consists of N snapshots with NV > m.
II1. Blind Source Separation based on Spatial Time-Frequency Signatures

A. Spatial Time-Frequency Distributions

The discrete form of Cohen’s class of STFD of the data snapshot vector x(t) is given
by [7]
xxtf) Z Z ¢lT t+l+7’) H(t+l_7-)e—j47rfr (3)

l=—00 T=—00
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where ¢(l,7) is a t-f kernel.. Substituting (1) into (3), we obtain

Dxx(ty f) = Dyy(t’ f) + Dyn(ty f) + Dny(t’ f) + Dnn(t: f) (4)

Under the uncorrelated signal and noise assumption and the zero-mean noise property,

E [Dyn(t, f)] = E [Day(t, f)] = 0. It follows
E [Dxx(t, f)] = Dyy(t, f) + E [Dan(t, f)] = ADga(t, )A" + E[Dua(t, f)].  (5)

Similar to (2), which relates the signal covariance matrix to the data spatial covariance
matrix, (5) provides the basis for source separation by relating the STFD matrix to the

source TFD matrix, Dgq(t, f).

B. Blind Source Separation [7]

In blind source separation techniques, there is an ambiguity with respect to the order
and the complex amplitude of the sources. It is convenient to assume that each source has
unit norm,-that is, Rgqa = L.

The first step of blind source separation based on TFDs is whitening of the signal x(t) of
the observation. This is achieved by estimating the noise power ! and applying a whitening

matrix W to x(t), i.e., an n x m matrix satisfying:
WR,,W# = W(R, — cI)WH = WAAFWH =1. (6)

The whitening matrix is estimated from the eigendecomposition of Rxx [7]. The accuracy
of the whitening matrix estimate depends on the estimation accuracy of the eigenvectors
and eigenvalues corresponding to the signal subspace. The whitened process z(t) = Wx(t)

still obeys a linear model,

2(t) = Wx(t) = WAd(t) + Wn(t) = Ud(t) + Wn(2), (7)

1The noise power can be estimated only when m > n [7]. If m = n, the estimation of the noise power becomes

unavailable and ¢ = 0 will be assumed.
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where U A WA is an n x n unitary matrix.
The next step is to estimate the unitary matrix U. The whitened STFD matrices in

the noise-free case can be written as
Dzz (t, f) = WDxx(t1 f)WH = UDdd(t’ f)UH (8)

In the autoterm regions ?, Dgagq(t, f) is diagonal, and an estimate U of the unitary matrix U
may be obtained as a joint diagonalizer of the set of whitened STFD matrices evaluated at
K autoterm t-f points, {D,,(t;, fi)|i = 1, ..., K}. The source signals and the mixing matrix
can be, respectively, estimated as d(t) = UWx(t) and A = W#U, where superscript #

denotes pseudo-inverse.

IV. Properties of STFD Matrices

In reference [13], the subspace analyses of STFD matrices are presented for signals with
clear t-f signatures, such as frequency modulated (FM) signals. It was shown that the
offerings of using a STFD matrix instead of the covariance matrix are two-fold. First, the
selection of autoterm t-f points, e.g., points on the source instantaneous frequency where
the power is concentrated, enhances the SNR. Second, the difference in the t-f localization
properties of the source signals permits source discrimination and allows the selection of
fewer sources for matrix construction. In the presence of noise, the consideration of a
subset of signal arrivals reduces perturbation in matrix eigendecoxﬁposition, and becomes
essential when there is insufficient number of sensors.

The prime motivation of this letter is to make use of the above properties in the whiten-
ing phase of TFD-based BSS methods. In particular, the implicit reduction in the noise
as a result of autoterm selection and fewer source considerations lead to improved signal
subspace and source number estimation. Both, according to (11), are key to the whitening

matrix construction.

2The selection of autoterm regions has been discussed in [11], [12], [14].
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V. Modified Method for Source Separation

In the method proposed in [7] and summarized in Section III, although STFD matrices
are used to estimate the unitary matrix U, the covariance matrix is still used in the
whitening process. Using the STFD matrix in place of the covariance matrix Ry to
perform whitening is an attractive alternative.

Denote Dyx(t1, f1), ---» Dxx(tk, fx) as the STFD matrices constructed from K autoterm
points being defined over a t-f region Q and belonging to fewer n, < n signals. Also,
denote, respectively, d°(t) and d(t) as the n, and n — n, sources being present and absent
in the t-f region Q. The n — n, sources could be undesired emitters or sources to be
separated in the next round of processing. The value of n, is generally unknown and can
be determined from the eigenstructure of the STFD matrix. Using the above notations,
we have

x(t) = A°d°(t) + Ad(t) + n(t), (9)
where A° and A are the m x n, and m x (n — n,) mixing matrices corresponding to d°(t)
and d(t) , respectively.

Let f)xx be the average STFD matrix of a set of STFD matrices defined over the
same region {2, but may incorporate a different t-f kernel. The incorporation of multiple
(¢, f) points through the averaging process reduces the noise effect on the signal subspace

estimation, as discussed in [13]. Denote 6%/ as the estimation of the noise-level eigenvalue

of the STFD matrix Dyx. Then,
WD,,WH = W(D,, — 6/T)W¥ = WA°D,(WA*)# =1. (10)

In (10), due to the ambiguity of signal complex amplitude in BSS, we have assumed that
the averaged source TFD matrix D4, corresponding to d°(t) is I of n, x n, for convenience

and without loss generality. Therefore, the whitening matrix W is obtained as
. e e H
W= [ -6y, (N — )l ] (11)
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where )\ﬁf  eeey )‘fzf,, are the n, largest eigenvalues of D, and htlf e hfj: are the corresponding
eigenvectors of ﬁxx. Note that ﬁ"dd and ﬁyy are of reduced rank n, instead of rank n, due
to the source discrimination performed through the selection of the t-f points or specific
t-f region. Therefore, WA°=Uisa unitary matrix, whose dimensibn is n, X n, rather

than n x n. The whitened process z(t) becomes
Z(t) = Wx(t) = WA°d°(t) + WAdA(t) + Wn(t) = Ud°(¢) + WAd(t) + Wn(t), (12)

In the t-f region Q, the TFD of d(¢) is zero and, therefore, the averaged STFD matrix of

the noise-free components becomes an identity matrix, i.e.,
Dy = WD WH = OD2, 0¥ = 1. (13)

Eqn. (13) implies that the autoterm and crossterm TFDs averaged over the t-f region
2 become unity and zero, respectively, upon whitening with matrix W. U as well as
the mixing matrix and source waveforms are estimated following the same procedure of
Section III. It is noted that, when n, = 1, source separation is no longer necessary.
Selection of the same number of sources, n,, should be done at both whitening and joint
diagonalization stages, otherwise mismatching of the corresponding sources will result.
While our proposed modified blind source separation method provides the mechanism to
satisfy this condition, the covariance-based whitening approach does not lend itself to

avoid the mismatching.

VI. Simulation Results

We consider a two-sensor array with a half-wavelength spacing. For simplicity, we
consider chirp signals as the sources to be separated‘. In the first example, two chirp
signals are received in the presence of white Gaussian noise. The sources arrive from
different directions 8; = 30° and 6, = 35°. The normalized start and end frequencies of

the first chirp signal are 0 and 0.5, respectively, whereas those for the second signal are
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0.1 and 0.4. The number of snapshots used is 1024.

The performance is evaluated by using the mean rejection level (MRL), defined as [7]

MRL =} E|(A*A),, (14)

‘2
p#q

where A is the estimate of A. A smaller value of the MRL implies better source separation

results. An MRL lower than —10 dB is considered satisfactory [7].

Fig. 1 shows the MRL versus the input SNR of the two sources (we assume that all signals
have the same power). The dashed line corresponds to the exisi;ing method where the
covariance matrix Ryy is used for whitening, and theb solid line corresponds to the modified
method where the averaged STFD matrix D, is used insteéd. In the latter, the average
of spatial pseudo-Wigner-Ville distributions (SPWVDs) of window size 257 is applied to
estimate the whitening matrix. For.the estimation of the unitary matrix for both methods,
the spatial Wigner-Ville distribution (SWVD) 3 matrices using the entire data record are
computed.  The number of points used to perform the joint diagonalization is K = 32 for
each signal and the points are selected on the signal instantaneous frequencies. The curves
are calculated by averaging 100 i‘ndependent trials with different noise sequences. Fig. 1
clearly shows the improvement when STFDs are used in both phases of source separations,
specifically for low SNRs. To satisfy the —10 dB MRL, the required input SNR is about
17.8 dB for the existing method and is about 5.6 dB for the modified method.

To examine the advantages of source discrimination in the t-f domain, we add another
chirp signal to the above scenario. The third chirp arrives from direction 63 = 40°, and
its normalized start and end frequencies are 0.15 and 0.55, respectively. Other parameter
settings are the same as those used in Fig. 1. Only the t-f points belonging to the first
two signals are chosen to construct the STFD matrices for both methods (i.e., n, = 2).

It is evident from Fig. 2 that, by discriminating against, or filtering out, the third signal,

3The method proposed here is not limited to use specific TFDs and the SPWVD and SWVD are chosen for
simplicity. Other TFDs can also be used.
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the modified method provides very close performance to the two-signal case, whereas the
existing covariance matrix based whitening method, due to the inability to discriminate
among sources and provide sufficient degrees-of-freedom for subspace estimation, cannot

provide satisfactory MRL, even when the input SNR is high.

VII. Conclusion

A modified blind source separation method for nonstationary signals is introduced.
In this method, the TFD signal localization properties are fully utilized for improved
separation performance. The proposed modification provides noise robustness and can be

used to reduce the number of sources considered for separation.
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A Unified Representation of Nonstationary
and Cyclostationary Signals

Yimin Zhang, Moeness G. Amin, and Gordon J. Frazer

Abstract

The cyclic auto-correlation function, commonly used for cyclostationary signals, and the ambiguity
function, typically employed for analysis and recovery of nonstationary signals, such as FM, have the
same formulation. However, nonstationary and cyclostationary signals have distinct localization proper-
ties in the time-lag frequency-lag domain. Therefore, nonstationary and cyclostationary signals can be
represented and processed within the same framework for many applications, with the distinct signatures
allowing effective source discriminations. An example in array processing is given where nonstationary
and cyclostationary signals are separated following simple spatial signature estimation exploiting the
aforementioned properties.
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I. Introduction

Most digital communication signals are stationary when they are sampled at the symbol-
rate. On the other hand, when they are fractionally sampled, they demonstrate the so-
called cyclostationary property, that is, the self-correlation function of such a signal is
periodic with non-zero cyclic frequencies [1]. Exploitation of the cyclostationarity allows
discrimination of source signals if their cyclic frequencies are distinct. This property
has been widely discussed for various purposes in array processing, for example, source
separation and direction finding [2], [3], [4], [5]-

Another function with similar definition is the ambiguity function [6]. An ambiguity
function is usually used for nonstationary signal analysis and waveform design. The con-
sideration of the ambiguity function for multi-sensor receivers yields ambiguity-domain
direction finding and source separation methods [7].

The purpose of this paper is to consider stationary, cyclostationarity and nonstationar-
ity in a unified framework, with applications to key problems in array processing. In the
unified time-lag frequency-lag domain, cyclostationary and nonstationary signals demon-
strate different properties which can be used for source selection and discrimination, lead-
ing to simplified approaches and improved performance. An example in array processing
is provided where nonstationary and cyclostationary signals are separated following simple

spatial signature estimation exploiting the aforementioned properties.
II. Cyclic Auto-Correlation Function and Ambiguity Function
A. Cyclic Auto-Correlation Function

The cyclic auto-correlation function p%(7) of a scalar signal s(t) is defined as

PP(7) = lim %/T ePits(t + 7/2)s* (t — 7/2)dt | (1)

T—o0 0

where (-)* denotes complex conjugate, and 7 and £; denote the time-lag and frequency-lag
variables, respectively. Signals with various modulations, such as amplitude modulation
(AM), phase shift keying (PSK), and frequency shift keying (FSK), demonstrate the cy-

clostationary property, that is, p%(7) # 0 for non-zero values of ;.
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B. Ambiguity Function

The ambiguity function of a signal s(t) is defined as

oo
Dy6,7) = [ eMs(t+r/2)s"(t — /2t @
—00

where (6, 7) are a pair of frequency-lag and time-lag variables, respectively. Comparing (1)
and (2), it is obvious that the cyclic auto-correlation function and the ambiguity function

are identical except for a normalization factor.

C. A Unified Framework for Discrete-Time Signals

In this paper, we consider a unified framework for cyclostationary and nonstationary
signals. By considering NV observations of discrete-time data, we define the unified cyclic

auto-correlation function and (normalized) ambiguity function as

U,(0,7) = -]1\7 Z_ 0s(t +7/2)s" (t — 7/2). 3)

t=0
D. Ezxample and Remarks

In Fig. 7?7, we illustrate the cyclic auto-correlation function of a BPSK signal, where
4 samples are generated from each symbol. 128 data symbols are used. A rectangular
waveform is used at each symbol and the amplitude of the waveform is unity. For all
plots showing the cyclic auto-correlation function (ambiguity function), the time-lag is
normalized by the symbol duration T, and the frequency lag is normalized by the symbol
rate f; = 1/T. With sufficiently large number of data samples, the cyclic auto-correlation
function has non-zero values only at § = kf,, where k is an integer. The cyclic auto-
correlation function depends on the symbol rate and the pulse shaping function.

In Fig. ?7, we illustrate the ambiguity function of a chirp signal, which has the same
data length as the BPSK signal (note the different 7 domain compared to Fig. 1). The
start frequency of the chirp is 0 and the end frequency equals the symbol rate f; = 1/T
(the corresponding range of 0 is from 0 to 7/2). The amplitude of the FM signal is 1.
The ambiguity function of a chirp signal shows a linear signature, for which the line of the
peak values always passes through the origin (§ =7 = 0).

It is clear that the peak values of the cyclic auto-correlation of a BPSK signal and

the ambiguity function of a chirp signal overlap over only a very limited area. Unlike
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the cyclic auto-correlation function of the BPSK signal, which has fixed and multiple
cyclic frequencies, the frequency-lag for the ambiguity function of a chirp signal is time-
lag dependent. Moreover, high values of the ambiguity function appear for each time-lag,
in contrast to the cyclic auto-correlation function of a BPSK signal where the peaks
correspond to only specific time-lag values. These properties are very important in source
discrimination, as will be discussed later.

It is noted that the distinctive signature contrast between the digital signal and the FM
signal is not preserved in the time-frequency domain, where the autoterm of the digital

signal spreads over the entire time and frequency extent of the signal.

II1. Array Processing
A. Signal Model

When m source signals impinge on an array of n sensors (we assume that n > m), the
received signal vector x(t) = [z;(t),- -, Ta(t)]T is expressed in the following form ((-)T

denotes the transpose of a matrix or a vector)
x(t) = y(t) + w(t) = As(t) + w(?) (4)

where y(t) = [1(t), -+, yn(t)]T is the noise-free signal vector, w(t) = [w; (%), - -, wa(t)]T
is the noise vector, and s(t) = [s1(t),- -, sm(t)]T is the source signal vector. Moreover,
A = [a},---,a,] is the n X m mixing matrix which is unknown. It is assumed that the
noise vector w(t) is stationary and is uncorrelated with the source signal vector s(t) (the
noise vector may be spatially and temporally white or colored).

For multi-antenna receivers, the (k, [)-th element of the cyclic correlation matrix (spatial
ambiguity matrix) Uy(6,7) can be defined as the cyclic cross-correlation function (cross-
ambiguity function) between z) and z;, expressed as

(U0, )les = 3 S ot + )it = 5) )
Denote Ug(#, 7) as the cyclic correlation matrix (ambiguity matrix) of the source vector s.
The (k,)-th element of Uy(#,7) is the cyclic cross-correlation function (cross-ambiguity

function) between s;(t) and s;(t)). We obtain the following result from (5)
E[U,(8,7)] = AU,(8,7)AY (6)
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for § # 0, where (-) denote conjugate transpose. Note that the noise component is not
shown in (6) as the expectation value of the cyclic auto- and cross-correlation function

(ambiguity function) of the stationary noise is zero for 6 # 0.

B. Source Discrimination and Separation

It is noted that (6) is valid for any point (6,7), # # 0. When considering one BPSK
and one FM signal, (0, 7) regions can be identified which include (8, 7) points belonging
to only one signal. That is, in the first group ; where the (6,7) points pertain to the
BPSK signal, we have

E[Ux(8,7)] = a1U, (6, 7)ay . (7)

Similary, in the second group €2, where the (6, 7) points pertain to the FM signal, we have
E[U,(8,7)] = ayU,,(8, 7)al. (8)

Therefore, in either §; or Q, E[Ux(6,7)] is rank one, and the spatial signature a; can
be easily estimated from E[Ux(#,7)] evaluated at any (6,7) € O, £k = 1,2. Given
finite period of data observation, multiple (,7) points can be incorporated to achieve
an improved estimate of the spatial signature. A convenient way to incorporate multiple
(6, 7) points is data augmentation [3], which obtains the spatial signature as the eigenvector
corresponding to the maximum eigenvalue of V, V¥, where V; is an augmented spatial

cyclic correlation matrix (spatial ambiguity matrix)
Vk = [Ux(o()a 7—0)7 Ux(ol) Tl)a T UX(OL—la TL—l)]a (9)

where Uy(0;,7;) € Q for ¢ = 0,1,---,L — 1 and k = 1,2. The high computations of
eigendecomposition can be avoided by using a simpler, but less noise robust approach in
which one, say, the first, column of matrix Vi VE is used instead.

Once the spatial signatures of both signals are estimated as A = [4;, 4], the waveform

of the BPSK signal can be estimated from
§=A#x (10)
where (-)# denotes pseudo-inverse of a matrix.
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It is noted that, when one of the two signals is far stronger than the other, the spatial
signature of the weak signal should be estimated after the strong signal is removed by
projecting the data to its orthogonal subspace [8]. An example of recovery of a BPSK

signal in the presence of strong FM jammer is presented in [9].

IV. Simulation Results

In the simulatidns, we consider one BPSK signal and one chirp signal impinging on
a three-sensor linear array with half-wavelength spacing. The respective waveforms are
described in Section II. The input power of both signals is 10 dB, and the input noise

power is 0 dB. The following mixing matrix is used:

0.890 + 70.465  0.962 + 50.012
A= | 0.065-350.826 0.779 + j0.481
—0.761 + 50.852 —1.100 — 50.160
which corresponds to the magnitude value 0.62 of the spatial correlation coefficient between
the BPSK and the chirp signal.

Fig. 77 shows the true and estimated waveforms of both signals. 512 (6, 7) # 0 points
along the chirp signature are used in estimating the spatial signature of the chirp signal,
whereas 4 (0, 7) points at (£1/T,£T/2) are used for the BPSK signal. The mean square
error (MSE) obtained from 200 independent trials is —15.65 dB and —12.51 dB respectively
for the two signals, which is very close to the bound —15.67 dB and —12.66 dB computed
using the true mixing matrix A instead of A in (10). The BPSK signal has a lower MSE

of about 3 dB because the quadrature noise component is removed.

V. Conclusions

A generalized framework is presented for separation and waveform recovery of cyclosta-
tionary and nonstationary signals. This approach is based on the general definition of the
cyclic auto-correlation function and the ambiguity function. Based on the distinct local-
ization properties of the nonstationary signals and cyclostationary signals in the time-lag
frequency-lag domain, source discrimination can be performed prior to array processing,

leading to simple yet effective waveform recovery.
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Fig. 1. Cyclic auto-correlation function (magnitude) of a fractionally sampled BPSK signal.

Fig. 2. Time-averaged ambiguity function (magnitude) of a chirp signal.
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Aperture Synthesis for a Through-the-wall Imaging System

Fauzia Ahmad, Saleem A. Kassam, Gordon J. Frazer, and Moeness G. Amin

Abstract

An aperture synthesis scheme using subarrays that is based on the coarray concept is
proposed for through-the-wall microwave imaging applications. Simulation results
depicting the effectiveness of the proposed synthetic aperture technique for a TWI system
-are presented. The effects of incorrect estimates of wall parameters and errors in array

element placement on this technique are also investigated.
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1. Introduction

The ability to see through walls, doors and other visually opaque materials, using
microwave signals has become a major area of interest in a variety of military and
commercial applications. Through-the-wall imaging (TWI) can be used in rescue
missions, behind-the-wall target detection, surveillance and reconnaissance, and even
sensing through smoke and dust. Ferris and Currie [1,2] have reviewed existing -and
under development microwave systems that can detect the presence of persons behind
walls and track their movement. Depending on the technology invoived, these systems
can provide a range resolution of a few inches and are able to sense moving targets and
measure their speed. However, most of these systems have poor spatial resolution.

Improved spatial resolution can be achieved by using an enlarged array aperture.
Howe{/er, with the constraints of portability and low cost on the system, an innovative
scheme is required for inpreasing the effective system aperture. In this paper, we use an
aperture synthesis scheme based on the coarray formalism for TWI. The concept of
coarrays was originally defined for narrow-band far-field active imaging {3, 4], and has
also been extended to wideband imaging [5]. The coarray provides a convenient and
elegant framework for understanding linear imaging techniques. This concept is
important for active imaging, as the angular resolutioh and the point spread function,
which is the response of the system to a péint target, are directly related to the size of the
coarray of the imaging system.

The coarray completely characterizes the performance of an imaging system, and is

defined to be the set [3]
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Cs={ziz=x+y,xeSr,yeSp} (H

where Sy and Sk are the sets containing the position vectors of the elements in the

transmit and receive apertures, respectively. It is possible for two systems that have the

same coarray to achieve the same imaging performance.

2.  System Specifications

In the underlying TWI system, we consider a pulsed radar system with a bandwidth

of 666 MHz centered at 2 GHz. The system has a range resolution of 0.225 m.

2.1 Choice of pulse repetition frequency (PRF)

The maximum unambiguous range sets the upper limit on the PRF, whereas the lower
limit is set by the desire to avoid Doppler ambiguities. For a pulsed radar, these limits on

PREF f,are given by
2fimax < fr SC¢/2R, (2)

where R, and fimax are the maximum unambiguous range and maximum anticipated target
Doppler frequency respectively. The free space path loss for the round trip range of 100m
at 2 GHz is 78.4 dB [6]. In addition to this, there will be losses due to attenuation és a
result of transmission through the wall, and further losses due to the fact that only part of
the transmitted signal gets reflected at each juncture. Therefore, signéls returning from
beyond this round trip range of 100m would be highly attenuated. We set the
unambiguous range for our TWI radar system to be 50 m (one half of the round trip
range), which corresponds to a PRF of 3 MHz. On the other hand, considering the effect

of likely translation, rotation, and oscillation of moving objects [7], we opt for a
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- maximum anticipated Doppler frequency of 250 Hz. This sets the lower limit of 500 Hz

on the PRF. Accordingly, 500 Hz <f, <3 MHz.

2.2 Effects of the wall through which the system is looking

The composition and thickness of the wall, its dielectric constant, and the angle of
incidence all affect the strength and characteristics of the signal propagating through the
wall. The dielectric constant of a dry concrete wall lies between 8 and 12. The velocity of
a radio wave through a medium of dielectric constant ¢ is given by

. _
= 3
v I (3)

where c is the speed of light. Therefore, the velocity of a signal propagating- through a
concrete wall will decrease by a factor of 2.8 to 3.4, inducing a bias in the target range

measurements [8].

3. Aperture Synthesis Using Subarrays

In this scheme, we employ a smaller transmit/receive array system as a subarray to
synthesize an effective larger aperture. The transmit and_receive subarray pairs are used
to form component complex images by weighted linear beamforming, which will theﬁ be
added coherently to obtain the composite complex amplitude image with the desired
spatial resolution. The composite image has an effective coarray that is the union of the
individual coarrays corresponding to each transmit/receive subarray pair. This and
several other aperture synthesis techniques based on the coarray have been discussed in

detail in [3].
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Since aperture synthesis is obtained by independent serial use of the various
subarrays, the overall system transmit and receive processing apparatus simplifies to that
required by one subarray combined with a subarray multiplexer. The resolution of the
larger array can thus be obtained by the use of a smaller number of processing channels at

the expense of increased data acquisition time.

3.1 Transmit and Receive Apertures

Achieving a spatial resolution of one-half a meter at a range of 5 meters along both
cross-range directions requires the length of the coarray along both directions to be at
least 10A, where A=0.15m is the wavelength corresponding to 2 GHz. This resolution
could be obtained by use of a A/2-spaced 11x11 element square filled array for both
transmission and reception. However, sucﬁ an array would require a total of 121
transmit/receive elements, thereby rendering it impractical. Alternatively, we can design
transmit and recéive array geometries of Fig. 1(a,b). The transmit array is a 4-elerﬂent
sparse array with an inter-element spacing of 8A. The receive array is a A/2-spaced 8x8
element square array. The corresponding coarray is shown in Fig. 1(c). It has a length of
11.50 along both cross-range directions, thereby giving a resolution of 0.43m at 5Sm
range. In order to apply the aperture synthesis technique, we divide these arrays into
several transmit/receive subarray pairs. The total number of such pairs is determined by
the increased data acquisition time due to serial operation of all the subarray apertures
and the PRF of the system. In the extreme case of a single transmitter and a single
receiver subarray, there will be a total of 256 subarray pairs. This requires 256 pulses to
generate one composite complex amplitude image. If the system is operating at a PRF of

3 MHz, the “actual” PRF for the system using subarrays will be 3 MHz/256 or 11.72
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kHz, which is still 23 times higher than the lower limit of 500 Hz on the PRF. Assuming
the scene is stationary over the 0.80us pulse repetition interval, we opt for single
transmitter, single receiver subarray apertures for the proposed system.

The subarray scheme in aperture synthesis partitions the coarray into distinct regions,
which, for our system, are single-element disjoint subsets of the whole coarray. The
coarray subsets corresponding to the 64 subarray pairs involving the same transmitter are

represented by the same shade of gray as that of the transmitter in Fig. 1(c).

3.2 Imaging System Model

We consider the wall and the transmit/receive subarray of omni-directional
transducers to be located in the x-y plane, whereas the volume to be imaged is located
along the positive z-axis. The volume of interest is divided into a finite number of pixels
in range, azimuth, and elevation. In order to image the set of ranges located along a
particular elevation and azimuth (05,¢5), we apply a time delay to the transmit element to
focus it at range Ry along (65,0¢). Then, we transmit the pulse, and process the reflections
as follows. Time delay is applied to the receive element so that it is focused at (Rg,05,¢s).
The delayed output from the receiver is matched filtered to detect I and Q components of
the resulting signal, and a single complex value I+jQ is formed. This process is repeated
for each range R¢ in direction (B:,0r) and‘ then repeated again for each elevation and
azimuth in the volume of interest. Component images are formed by repeating this
process with various subarrays, and are coherently added to form the composite image.
The displayed image is the magnitude of the complex value measured for each pixel.

Let us now consider in detail what the value of a single image pixel will be with a

single transmitter, single receiver subarray for the case of a single point target. The
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general case of multiple targets can be obtained by superposition. Let the transmitter and
receiver locations be x; and x,. Let the target be located in the direction
g=(u,v)=(sin(6)cos(p), sin(6)sin(¢)) at range R as shown in Fig. 2. Suppose it is desired
to image the pixel at rénge Ry in the direction h=(sin(6¢)cos(¢s), sin(Og)sin(es)). As a time
reference, let an element at the origin be given zero time delay. Let
p(O=Re{y(t)exp(jow.t)} be the pulse transmitted from an element at the origin. y() is the
complex amplitude of the pulse at w.. Then the pulse received at x, when the transmitter
is at x¢ 1s

q(t)=Re{exp(-a(di+d,))aR,g)ww, y(t-t)exp(joc(t-1) } “)
where o is the attenuation constant of the wall, d; and d, are the distances traveled through
the wall on transmit and receive respectively, a(R,g) is the complex reflectivity of the
target, w, and w, are the weights applied to the transmit and receive elements respectively
and 7 is the sum of propagation and focusing delays when the array is focused in direction
h. These delays incorporate the slowing of waves due to propagation through the wall.
The received signal is passed through I and Q matched filters, and their outputs are

sampled at time T corresponding to the waveform time of flight for the focused range Ry.

Hence,
I=[q(&)y(&-T)cos(w (& -T)dS (5)
Q=-[q()y& -T)sin(@. (& -T)dS | (6)
where
T=Q2R; —(d, +d,)[c+(d, +d,)]v )
and v is given by (3).
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3.3 Model of the Walls

Each of the two side walls and the scene back wall is modeled as a set of point
reflectors having the same constant reflectivity coefficient. Since backscattering from the
two side walls is small compared to the back wall, the reflectivity coefficients as well as
the density of the point targets constituting the side Walls are given a lower value relative

to the back wall. Figure 3 shows how these walls would look like in the R-u plane.

4. Simulation Results

In this section, we present simulated B-Scan and C-Scan images obtained using
subarray aperture synthesis for the TWI system described above. All of the B-scan
(Range vs. u) images are computed for v=0. The room being imaged is 5Sm x 7m. The.
wall through which the system is looking is a 6" thick concrete wall with a dielectric
constant £ of 9. The room contains 4 stationary point targets, representing persons, whose
locations and reflectivities are given in Table 1. Since the human body is composed of
65% water, its reflectivity is quite high as compared to that of the walls. Therefore, the
back wall is given a reflectivity of 0.5 whereas each side wall is given a reflectivity of
0.3. The reflectivities are assumed to be frequency-independent. Also, the one-way
attenuation through the wall is taken to be 6 dB for 6" thickness [7,8]. In all the figures,
we plot the magnitude of the reflectivity estimate, with maximum value normalized to
unity.

Figure 4 shows the B-scan image obtained under the assumption that the wall
parameters (thickness and dielectric constant) are known exactly. We see that our scheme

gives accurate estimates of target ranges and angular locations and is able to resolve the
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targets at the same range. Figure 5 shows the extreme case scenario when we assume to
have no knowledge of the wall parameters (estimated thickness and ¢ are 0 and 1
respectively). We note that the range estimates have large errors since the slowing down
of the waves is not accounted for. Also due to focusing errors in beamforming, there is an
error of 0.1 in the u-location of the target at 3m. The u-location errors of the other 3
targets ére not that significant. This is because for targets closer to the front wall an‘d at
angles way off broadside, the distance through the wall is a significant portion of the
target range and hence, errors are more pronounced. However, these errors would occur
even if the entire transmit and receive arrays were used for beamforming instead of the
subarray approach. Due to component image addition with focusing errors, the sidelobes
are higher by 2 dB approximately over those in Figure 4.

Figure 6 shows the B-scan image obtained with exact knowledge of wall parameters,
but with the following errors in transmit array locations (2" in left, 1" in right, 1" in top,
0" in the bottom element). These errors are possible, although large, in a practical set up.
The beamformer, however, assumes no such errors exist. Although the sidelobes are
raised, no other significant errors are observed. A C-scan image (u vs. v) for a fixed range
of 6.0375m under no error conditions is shown in Figure 7. Clearly, the desired spatial

resolution is obtained in both cross range directions.

5. Conclusions

We have examined the effectiveness of the aperture synthesis technique using
subarrays for the through-the-wall microwave imaging problem. It is shown that the
aperture synthesis technique can be used to achieve the desired cross-range resolution.

The application of sparsely populated array geometries is desirable in TWI applications
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to reduce system cost and complexity. We have shown that the proposed scheme is robust
to a variety of errors such as incorrect estimates of wall parameters and array element

location errors.
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Target No. Range (m) U v Reflectivity
1. 3.0 -0.7 0 0.707-j0.707
2. 6.0375 0.05 0 0.707+4j0.707
3. 6.0375 0.19 0 0.5+j.866
4. 5.7 0.12 0 0.866+j0.5

Table I: Locations and Reflectivities of the stationary targets in the room.
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| Time-frequency ESPRIT for
direction-of-arrival
estimation of chirp signals

Aboulnasr Hassanien, Alex B. Gershman, and Moeness G. Amin

Abstract

In this paper, we develop an ESPRIT-type algorithm for estimating the Directions-Of-Arrival (DOA’s)
of multiple chirp signals using Spatial Time-Frequency Distributions (STFD’s). An averaged STFD matrix
(or multiple averaged STFD matrices) are used instead of the covariance matrix to estimate the signal and
noise subspaces. The proposed algorithm is shown to provide a significant performance improvement over
the traditional ESPRIT aigorithm for FM sources, specifically in situations with closely spaced sources
and low Signal-to-Noise Ratios (SNR’s). Simulation results are provided to illustrate the performance of

the proposed approach in scenarios with multiple narrowband chirp sources.
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I. Introduction

The problem of DOA estimation in the presence of chirp and FM signal sources in sensor
arrays arises in Synthetic Aperture Radar (SAR), Synthetic Aperture Sonar (SAS), inverse
SAR and SAS (ISAR and ISAS), Doppler radar and sonar imaging, as well as in mobile
communications, where FM signal waveforms can be intentionally transmitted [1]-[9]. In
conventional array processing, subspace methods (for example, MUSIC and ESPRIT) are
commonly applied and achieve excellent performance at a moderate computational cost.
However, conventional subspace methods are based on the assumption that the received
signals are stationary. As a result, the performance of conventional subspace-based DOA
estimation techniques can degrade when dealing with nonstationary chirp signals.

Recently, STFD’s have emerged as an efficient means of array processing in the case of
multiple FM signals [10]-[14]. Spreading the noise power while localizing the sources in the
time-frequency domain helps to improve the DOA estimation performance and enhance
robustness against sensor noise. However, the existing narrowband STFD-based DOA
estimation ‘techniques [10]-[13] are based on a spectral search and, as a result, have high
computational costs.

In this paper, a search-free STFD-based (timé-frequency) ESPRIT algorithm is devel-
oped. In order to obtain improved estimates of the signal and noise subspaces, we use
an averaged STFD matrix (or multiple averaged STFD matrices) in place of the covari-
ance matrix which is used in the conventional ESPRIT algorithm. This averaging involves
time-frequency points that correspond to source signatures with a maximal energy. The
source DOA’s are then estimated using either the least squares (LS) or the total least
squares (TLS) ESPRIT approach [16]-[18].

The proposed technique enables to separate the signals in different averaged STFD
matrices prior to DOA estimation and, therefore, makes it possible to estimate the source
DOA’s in the case when the number of array sensors is less than the number of sources.

Moreover, closely spaced sources with well separated time-frequency signatures can be
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efficiently resolved by separating them in different averaged STFD matrices and applying
the ESPRIT algorithm to each of them independently.

To validate the effectiveness of the proposed technique and compare its performance
with the conventional array processing methods, simulation resuifs for chirp sources are
presented. It is shown that significant performance gains can be achieved by the proposed

algorithm compared to the conventional LS- and TLS-based ESPRIT techniques.

I1I. Signal Model

Consider L chirp signals impinging on a Uniform Linear Array (ULA) of M sensors.

The array output (data snapshot) vector x(t) € C¥*! is modeled as
x(t) = Ad(t) +n(t), t=1,...,N (1)

where d(t) € C*! and n(t) € €**! are the vectors of signal waveforms and sensor noise,

CM*L is the array

respectively, NV is the number of data snapshots available, and A €
direction matrix. It is assumed that A is full rank (which means that the steering vectors
corresponding to L different angles of arrival are linearly independent). We assume that

the noise is a spatially and temporally white zero-mean process, i.e.
E{n(t)n (s)} = 0214, (2)

where I is the identity matrix, o2 is the noise variance, é; s is the Kronecker delta, and

() stands for the Hermitian transpose. The direction matrix can be expressed as
A=[a@),...,a(6) | 3)

where

a(f) = [1,ei¥0500  EAM-Dsin0)T | (4)

is the steering vector, {fx}£_, are the signal DOA’s, w is the central frequency, c is the
propagation speed, A is the interelement spacing, and (-)T denotes the transpose. Note

that this model corresponds to the assumption of narrowband chirp signals where changes

71




of the central frequency within the observation interval are negligibly small (i.e., the matrix
A is time independent) [10]-[13]. The case of wideband chirp signals is addressed in [14]
and [15].
The sample Spatial Pseudo-Wigner-Ville Distribution (SPWVD) matrix is given by
[10]-[13]
(K-1)/2

Dyx(t, f) = Z x(t + 7)x (t — 7)e 34T (5)
T=—(K~-1)/2

where K is the odd window length. Taking the expectation, and assuming that the source

waveforms and sensor noise are statistically independent, we have that [10], [14]

Dux(t, f) = E{Dxx(t, )}

= ADyq(t, f)A¥ +0%1 (6)
where
Daa(t, f) = E{Daal(t, )} “ (7)
) (K-1)/2
Ddd(t, f) = Z d(t + T)dH(t - T)C_j47rfT (8)
r=—(K-1)/2

The relationship (6) holds true for each (¢, f) point. In order to reduce the effect of the
sensor noise, an averaging over multiple (¢, f) points (corresponding to the autoterms of
the STFD) can be used. The eigenstructure properties of the averaged STFD matrix
can be exploited to estimate the signal DOA’s in a similar way as in the conventional
subspace-based array processing techniques [10}-[14].

In practical situations, the sample STFD matrices (5) are used instead of the exact
(statistically expected) matrices (6). In the case of sources with distinct time-frequency
signatures, it is possible to construct the averaged STFD matrices over time-frequency
points belonging to a subset of the sources in the field-of-view. Using this approach,
sources with close angular spacing can be efficiently resolved by separating them inl dif-
ferent averaged STFD matrices and applying a DOA estimation algorithm to each matrix

independently.
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III. Time-Frequency ESPRIT

Let the averaged STFD matrix Dyy be formed by averaging of multiple SPWVD matri-
ces computed at PJ different time-frequency points {¢,, i} (®=1,...,P;i=1,...,J)

that belong to the time-frequency signatures of Ly source signals (Lo < L < M):

Dxx = 2:1 z; Dxx(tpa fz) (9)
p=1i=

Note that the values of P and J may vary with time and can be determined by means of
detection of the source time-frequency signatures, see [14], [19], and [20]. Let us divide a
ULA of M sensors into two identical subarrays of M —1 sensors shifted by the interelement
spacing A, as shown in Fig. 1. As in the conventional ESPRIT case, define the sub-

matrices A; and A, by deleting the last and first rows from A respectively, i.e. let

A, first row
A= = (10)
last row A,
Then, A; and A, are related as
A2 - A1¢ (11)
where
® = diag{e’™, ..., e/ o} (12)
and
pi = (w/c)Asin 6; (13)

are the source spatial frequencies.

Let Ug be the matrix formed from the eigenvectors of D, that correspond to the Ly
eigenvalues with the largest magnitude. As the columns of the steering matrix A and the
matrix Ug span approximately! the same (signal) subspace of the dimension Lg, there

exists a nonsingular Ly X Ly matrix T such that

!Note that Us is obtained from the eigendecomposition of the sample STFD matrix D .
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Applying this transformation to the sub-matrices A; and A,, we obtain

Usy ~ AT (15)

US,Q a-d A2T (16)

where Ug; and Ug, are formed by deleting the last and first rows of Ug, respectively,

that is
Us = Us _ first row (17)
last row Us2 '
Using (11) and (15)-(16) yields
Usy >~ Ug ¥ (18)

where the matrices ¥ and ® are related as
¥ =T"1T (19)

This means that {e/#}22, are the eigenvalues of the matrix ¥ [16]-[18].

Now, we can formulate our time-frequency ESPRIT algorithm as follows:

« Step 1: Compute the sample SPWVD matrices Dy (¢, f) for all
time-frequency points of interest and select the maximal energy
points that belong to the source signatures.

o Step 2: Compute the averaged STFD matrix Dy for a previously
selected part of sources (for Ly < L sources) by means of involving
in the averaging process only the time-frequency points that belong
to the spatial signatures of these Ly sources.

« Step 3: Compute the eigendecomposition of Dyy and obtain Us.
o Step 4: Obtain an estimate ¥ of the matrix ¥ by solving (18)
using either LS or TLS approaches.

o Step 5: Obtain estimates of the spatial frequencies u; from the
eigenvalues of ¥ and use them to find the estimates of the source
DOA’s 6;.

o Step 6: Repeat Steps 2-5 for other (selected) parts of sources.
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Note that algorithms are available to classify auto- and cross-terms in STFD’s [19], {20].
These techniques can be used in Step 2.

The possibility of separating sources in different averaged STFD matrices prior to DOA
estimation can essentially improve the performance of the ESPRIT algorithm, especially
in the low SNR case and in the presence of closely spaced sources which are well separated
in the time-frequency domain. However, this will increase the computational costs relative
to the conventional ESPRIT algorithm because in this case ESPRIT should be applied

simultaneously to several averaged STFD matrices.

IV. Simulation Results

We assume a ULA with A = \/2. This array is divided into 2 subarrays with the inter-
subarray displacement A\/2 as shown in Fig. 1. Two narrowband chirp signals impinge
on the array from the sources located at §; = 3° and 6, = 6°. After downconversion, the

source waveforms are modeled as

di(t) = eI(wit+p1t?/2)

do(t) = ed (wat+B2t?/2)

The initial discrete-time frequencies of the source signals are chosen to be w; = 0 and
wq = 7 while their chirp rates are assumed to be §; = 0.002 and 5, = —0.002, respectively.
An observation interval of N = 255 snapshots is considered. Figure 2 shows the pseudo-
Wigner-Ville distribution of the signals in the first array sensor. The noise is modeled
as a complex Gaussian zero-mean spatially and temporally white process. A total of 300
independent Monte-Carlo simulation runs have been used to obtain each simulated point.
The averaged STFD matrix D, is computed for each source signal separately by averaging
the sample STFD matrices computed at 150 different time-frequency points that belong
to the source signatures.

In the first example, we use an array of M = 10 sensors. Figure 3 displays the DOA

estimation Root-Mean-Square Errors (RMSE’s) versus the SNR for the conventional LS-
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and TLS-ESPRIT algorithms, as well as for the proposed time-frequency modification
of the LS- and TLS-ESPRIT techniques. Additionally, the so-called deterministic CRB
[21] is shown in this figure (the latter bound is computed under the assumption that the
source waveforms are unknown deterministic sequences). ;From Fig. 3, it is clear that
the time-frequency ESPRIT algorithm has a substantial improvement over conventional
ESPRIT. This is especially true in the low SNR case. Note that neither time-frequency
ESPRIT nor conventional ESPRIT approaches the deterministic CRB.

In the second example, the source SNR is fixed and equal to 4 dB, while the number
of array sensors is varied. Figure 4 shows the RMSE’s of the same four methods as in
the previous example versus the number of sensors M. It is evident from this figure
that the time-frequency ESPRIT algorithm has substantially better performance than the
convectional ESPRIT technique. Furthermore, at small values of M, the RMSE’s of time-
frequency ESPRIT can be lower than the deterministic CRB. To explain this behavior, we
note that the displayed bound assumes unknown deterministic signal waveforms [21] and,
therefore, does not take into account the chirp signal structure [8]. However, this structure
is exploited in the proposed algorithm. Obviously, this can cause situations when the DOA

estimation accuracy of the proposed technique is better than the deterministic CRB.

V. Conclusions

A time-frequency ESPRIT algorithm is introduced for DOA estimation of chirp signals
in sensor arrays. The proposed algorithm is based on the concept of Spatial Time-Frequen-
cy Distributions (STFD’s) and employs multiple averaged STFD matrices, instead of the
covariance matrix (used in conventional array processing methods), to obtain the estimates
of the signal DOA’s. Computer simulations show that in scenarios with chirp signals, the
proposed technique outpérforms the conventional ESPRIT algorithm. The performance
improvement is especially high in the case when the SNR is low or the sources are closely

spaced.
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Automatic Classification of Auto- and
Cross-Terms of Time'—Frequency Distributions

in Antenna Arrays

Luke A. Cirillo, Abdelhak M. Zoubir, Ning Ma, and Moeness G. Amin

Abstract

The problem of selecting auto- and cross-terms of time-frequency distributions (TFDs) of nonstation-
ary signals impinging on a multi-antenna receiver is considered. A detection approach is introduced which
allows performance measurement and comparison of various schemes via receiver operating characteristics.
Array averaging and array differencing techniques are both employed to form a basis for time-frequency
(t-f) point selection. The proposed classification method is evaluated against the bootsrap-based method.

It is shown that the former offers improved performance and simplified implementations.
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I. Introduction

Time-frequency distributions have recently been proposed for applications to array sig-
nal processing problems [1], [2]. For this purpose, spatial time-frequency distributions
(STFDs) have been introduced and represented in a matrix form. The elements of a STFD
matrix are the time-frequency diétributions and the cross-time frequency distributions of
the data received at the multi-sensor array. It has been shown that the relationship be-
tween the spatial time-frequency distributions of the sensor data and the time-frequency
distributions of the sources is identical to that of the sensor data covariance matrix and the
sources’ correlation matrix. This key property permits direction finding and blind source
separation to be performed using the sources’ time-frequency localization properties.

Blind source separation has been typically solved using statistical information available
on source signals, including second or higher order statistics. A primary contribution in
this area was to show that the STFDs are an effective alternative to separating sources
whose signatures are different in the t-f domain [1], [2]. Successful applications of STFDs
to source separation require computing STFDs at different t-f points. The auto-terms,
which enforce the diagonal structure of the source TFD, are then incorporated into a joint-
diagonalization (JD) technique to estimate the mixing, or the array manifold matrix. This
technique was further generalized to incorporate cross-term STFD matrices by performing
combined JD and joint off-diagonalization (JOD) [3]. In both of these methods, proper
selection of either auto- or cross-term locations in the time-frequency plane has remained
an important and necessary task.

A statistical test to decide whether a t-f location is dominated by auto- or cross-terms
has been proposed in [4]. Array averaging of the TFDs is used to reduce the cross-terms
without smearing the auto-terms [5], allowing the auto-terms to be more pronounced and
easier to detect in the t-f domain. However, as shown in [6], there are advantages to using
both auto- and cross-terms in combined JD/JOD. This requires devising an equivalent

technique for cross-term enhancement and selections.
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In this paper we propose a simple method for the suppression of auto-terms and en-
hancement of cross-terms. A procedure for automatic selection of auto- and cross- terms

is proposed and a performance comparison to the bootstrap based scheme is given.

II. Signal Model

We consider the general problem of a number of independent non-stationary sources
impinging on an array of sensors which has at least as many elements as the number of

sources. The model for the array output is given as follows,
x(t) = As(t) + n(t), (1)

where x(t) = [x1(t), ... ,Xm(t)]' is the array output vector, s(t) = [sy(t), ... ,sq(t)] is the
dx 1 source signal vector and n(t) is the mx 1 independent and identically distributed noise
vector of variance o2, at time t. The m xd mixing matrix A is of the form A = [a1,... ,a4],
where a; = [ay;, ... ,am;]’ denotes fhe steering vector for source i. Here m represents the

number of array elements and d denotes the number of source signals.

A. Spatial TFD

The discrete form of Cohen’s class of TFD?’s, for a signal z(t) is given by [7]

Dyt f) =§: ¢(m,Dz(t +m+ Dz*(t + m — e 94!,

l,m=—o0

where ¢(m, 1) is the kernel defining the distribution. The STFD matrix, based on Dq,(t, f)

has been introduced in [1] and is given by

Dy (t,f) = Zq&(m, Dx(t + m + Dx¥(t + m — 1)e 348,

Im=—00

In the (noise-free) case of auto-sensor TFD’s,
d "
Dyya, = Zz=1 2 v=1 Okubiy D, (2, f) (2)

where # is the Hermition operator and Dy,,.(t, f) is the ij element of Dg,(t, f); the source

TFD matrix. The ij element of matrix Dy, (t, f) is equal to D,4,(2, f), which is obtained
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from the expression for D,,(t, f) by replacing the bilinear product of z(¢) with the data
received at sensors 7 and j.

Below we consider only the pseudo Wigner-Ville distribution [7] with odd window length
L and henceforth refer to the STFD matrix as D,y where the (¢, f) parameters are dropped

for convenience. The same applies to Dg.

B. Test Statistic

In [4], identification of auto- and cross-terms is achieved using the test statistic
trace {D,,} / norm {D,,}, (3)

where trace {-} is the matrix trace and norm {-} is the Frobenius norm of a matrix. With

&2 being an estimate of o2,
Dzz‘= W(Dxx - AZI)WH, (4)

where W is an estimate of the whitening transform W such that WAD,, AHWH is a
unitary transformation of Dy;,.

It is proposed to discriminate between noise and either auto- or cross-terms by using the
variance of the test statistic. As only a single value of the test statistic is known at any
t-f point, the variance is estimated using a bootstrap resampling scheme by [4]. Once the
noise regions in the t-f domain are identified, a threshold is set to discriminate between

the auto- and cross-term locations.

ITII. Selection of Auto-terms

We denote the set of all t-f locations which contain the auto-terms, by S, . The test is

formulated as follows:

Hy: (to,fo) & Sa
Hy: (to,fo) € Sa,
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where the null hypothesis Hy is that the point (¢, fo) is not an auto- term. To apply this

test, we define

S4 = {(t, f)e Sr: é trace {Dgs(t, )} > 'yA} (6)

where Sr is the set of all locations in the t-f plane and -y, is an arbitrarily selected bound.

A. Array Averaged TFD

The array averaged TFD improves signal synthesis performance by suppressing the

cross-terms [5]. It is given by
D, f) = L trace{Dxx}

= Zz:l Ej:l /BuvDsusv (t; f)a

where (3,, = —Tl;l-af,{au is the spatial correlation coefficient of sources u and v. The value

(7)

of B, is one for auto-source terms and less than or equal to one for cross-source terms.
This coefficient takes a zero value if the respective sources u and v have orthogonal spatial
signatures.

The whitened array average is defined as

D, = trace {WDXXWH} /d (8)

with expected value E[ D,] = ( trace {Dss} + 0% Tw ) /d, where Tw = trace {WWH}.
This indicates that a test statistic useful for detection of auto-terms can be based on the

whitened array average since total cancellation of cross-terms is achieved.

B. Setting the Threshold

In the case of FM signals which have constant power over the observation interval, the

variance of the whitened array average can be approximated by

_ 2
Var[ D) = 0%, ~ () L (2 Tw +0° Taa),
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where Tw: = trace {(WWH)2}. As D, is approximately normally distributed, a

threshold + for classification of auto-terms is set according to
vY=9a+0° Tw/d+ Ni_a0 p,,
where N, is the inverse of the standard normal distribution at probability «.

IV. Selection of cross-terms

We denote the set of all t-f locations that contain cross-terms of interest, by S¢ . The

test is formulated as follows:
Hy: (to,fo) & Sc
Hp: (to, fo) € Sc
where the set Sc is defined in a similar manner to (6).
A. Array Differenced TFD

In order -to suppress the auto-terms while supporting the cross-terms, we define the

array differenced TFD

Bit, f) = —= 3 (Dae(t:.1) — D(t, )’ (10)

m
u=1

which corresponds to the sample variance of the auto-sensor TFD’s. Expanding the sum-

mand with (2) and (7) we obtain

d d 1 '
= Z (akua’kv - Z alualv) ‘Dsusv (t’ f)

and for u = v (auto-terms)

d
Gr(t, f) = Z (lakUI2 - _Elalu| ) susu (b f)

= 0, if Ja;)* = ¢; V i
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Here a,, corresponds to the complex weighting of source v at element u of the array. The
array difference results in complete cancellation of auto-terms, provided each sensor of the
array has the same gain, even if the sources have different power. The array difference
method is illustrated in Figure VII, where there are two chirp signals present having DOA’s

of 10 and —10 degrees at a 2 sensor array.

B. Setting the Threshold

The variance of the array difference is signal dependent and not easily approximated
unless the SNR is very low. A threshold to automatically detect the cross-terms may be

set by the following function

v=fp+p6 (11)

where [ and & are estimates of the mean and standard deviation of the array difference
respectively. Due to the peaks of aﬁto- or cross-terms in the distribution, the mean may be
estimated using the median of each time-slice, and the standard deviation as the average
absolute deviation from this value. A suitable value for the parameter # may be in the

range 3 to 5 depending on the rate of false classification that is considered acceptable.

V. Point Classification

In blind source separation (BSS) and direction of arrival (DOA) estimation, the ultimate
goal of point selection is to allow construction of STFD matrices with either a strong
diagonal or off-diagonal structure. This implies that only peaks of the auto- and cross-
TFD’s should be in S4 or S¢ . In the case of a signal synthesis problem, we wish to
select as many of the desired signal’s auto-TFD terms as possible without including cross-

or noise-terms. This will determine the appropriate value for the bounds 4 or vc¢.
A. Point Classification Scheme
There are t-f locations dominated by either auto-, cross- or noise-terms. Using the

array averaged (AA) TFD cross-terms are suppressed while the array differenced (AD)
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TFD suppresses auto-terms. This translates the classification problem with three classes,
into two classification problems each containing two classes. A proposed point classification
scheme is illustrated in Figure 2.

The method of point classification involves thresholding of the appropriate TFD to ob-
tain a set of t-f points. The TFD is also smoothed using a two-dimensional filter to reduce
the effect of noise, and a threshold is applied to obtain another set of t-f points. This set of
points is processed using binary morphological operations under the assumption that auto-
and cross-terms will have some structure or connecied shape in the TF plane. The block
labelled O-C in Figure 2 signifies opening and closing operations [8] are used. The final
decision is obtained as the intersection of these sets of t-f points. The result is a reduction

in the false classification rate compared to that observed with simple thresholding.
B. Performance Evaluation

Performance of the classification scheme is evaluated by means of an operating charac-
teristic (OC) curve. This gives the probability of (correct) classification for a particular
probability‘ of false classification. The set of t-f locations obtained by point classification
of auto- and cross-terms are respectively denoted S, and Sc . Accordingly, empirical

probabilities of detection and false alarm:

Po=#{Sa[) Sa }/#{Sa},
Pea= #{ Sa — Sa}/#{Sr — Sa},

where #{-} denotes the number of elements in the set.

VI. Simulation

In the following simulations we choose 74 and ¢ to be 3dB below the peak of the source
signals auto- and cross-terms respectively. The threshold of each point detection scheme

is varied in order to generate the operating characteristic. Herein point detection using
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the array average and array difference will be referred to as method one and the bootstrap
resampling scheme will be called method two.

In the first case, we consider a scenario with two source signals impinging on a three
sensor array at 0 dB SNR. The source signals s;(¢) and s(t) are chirps with start and end
frequencies (0.37,0.17) and (0.257,0.017) respectively. The OC’s of method one and two
are shown in Figure 3.

In the second case we consider a scenario with four source signals impinging on a five
sensor array at 5 dB SNR. The source signals s,(t) and s,(t) are as defined previously.
Signal s3(t) is a chirp with start and end frequency of (0.2, 0.3257). The signal s,(t)

is of the form
84(t) = exp[j2m (K1t'° + Kyt)],

where K; and K, are chosen such that the start and end frequencies are (0.25,0.57).
The signal s4(t) has a non-linear instantaneous frequency and therefore the auto-terms
are not properly localized, when using WVD. The OC’s of method one and two are shown

in Figure 4.

A. Discussion

Simulations show that in low SNR, correct identification of both auto- and cross-terms
is achievable with probability of false classification less than 2%. In the first scenario, only
30% of the total cross-terms were identified for 2% miss-classification. However, for the
application of BSS, only a few strong cross-terms locations are required.

Similar performance in terms of operating characteristic has been achieved using both
methods for point classification. In terms of computational complexity, the method of ar-
ray averaging and differencing are significantly simpler than the bootstrap based method.
The computational cost of computing both an array average and an array difference
is comparable to computing the test statistic (3). However, bootstrapping requires re-

computation of this statistic many times and thus implies a larger computational burden.
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VII. conclusion

Selecting of auto- and cross-terms from an observed TFD has been cast here as a detec-
tion problem. A detection approach allows performance measurement and comparison of
- various schemes via the operating characteristic curves. The idea of array differencing has
been introduced and combined with the method of array averaging to form the basis of a
point selection algorithm. Performance of this scheme has been evaluated and compared
to a bootstrap based method, showing both performance improvement and computational

savings.
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